Immunohistochemical study of Langerhans cells in periapical lesions; correlation with inflammatory cell infiltration and epithelial cell proliferation

Celia Carrillo 1, Miguel Peñarrocha 2, Maria Peñarrocha 3, Francisco Vera 4, David Peñarrocha 5

1 DDS Master of Oral Surgery and Implantology. Valencia University Medical and Dental School
2 PhD, DDS Professor of Oral Surgery. Director of the Master of Oral Surgery and Implantology. Valencia University Medical and Dental School
3 PhD, DDS Associate professor of Oral Surgery. Valencia University Medical and Dental School
4 PhD, DDS Professor of Pathology, Faculty of Medicine and Dentistry, Valencia University; Chairman of Pathology II, “La Fe” University Hospital, Valencia, Spain
5 Student of Master of Oral Surgery and Implantology. Valencia University Medical and Dental School

Correspondence:
Cirugía Bucal. Clínicas Odontológicas
Gascó Ollag 1
46021- Valencia. Spain
Miguel.Penarrocha@uv.es

Received: 16/12/2008
Accepted: 12/09/2009

Abstract
Aim: The aim of this study is to determine the presence and distribution of Langerhans cells in periapical lesions, and correlate this with inflammatory cell infiltration and epithelial cell proliferation. Material and Methods: Seventy chronic dental periapical lesions, obtained during periapical surgery from 70 patients, were included in this study, including: 46 granulomas, 18 scar tissue and 6 periradicular cysts. Immunohistochemical staining was performed using the following markers: CD3 to analyze the inflammatory infiltrate, CD1a to determine the presence of Langerhans cells and Ki67 to analyze the epithelial cell proliferation. The CD1a immunostaining density was established following Cincura (2007) criteria, being classified ranging from intense (3), moderate (2), discrete (1) or no (0) immunostaining. CD3 and Ki67 staining was evaluated following the Liapatas et al. scale, as: 0) no cells stained; 1) weak stain or few cells stained (11-25%); 2) moderate staining or some cells stained (26-75%); 3) intense staining or many cells stained (more than 76%). Results: Langerhans cells were found in 32.8% of the periapical lesions being more intense in the epithelialized lesions. CD3 immunohistochemical staining was found in all lesions, but with different values in relation to histological subtypes. Ki67 was positive in all epithelialized lesions, although with a moderate staining. Conclusions: Langerhans cells appeared to be associated with T-lymphocyte infiltration and the proliferative potential of the epithelial tissue in periapical lesions.

Key words: Periapical lesion, immunochemistry, Ki67, CD1a, inflammatory cell, Langerhans cell, epithelial proliferation.
Introduction

Langerhans cells (LCs) are dendritic antigen-presenting cells that initiate a primary T-lymphocyte-dependent immune response (1). These cells originate from the bone marrow (2), and are present in the oral epithelium (1). Available evidence indicates that LCs play an important part in cell-mediated immune reactions as well as in the pathogenesis of periapical lesions (3).

LCs were observed in areas of intense inflammation, evidenced by large numbers of lymphocytes, polymorphonuclear leucocytes and plasma cells. The finding of lymphocytes adjacent to LCs, suggested increased antigen challenge and antigen-processing activity and that T-lymphocytes may act as effectors cells in the pathogenesis of the cyst, after receiving information from stimulated LCs (4).

The tissues of granulomas and radicular cysts are infiltrated by specific and nonspecific cells involved in the local immunological responses (5). Kontiainen et al. (6), observed that over 50% of the total cells studied in periapical lesions were lymphocytes and more than half the lymphocytes infiltrating the lesions were T cells. The monoclonal antibody Ki-67 detects a nuclear antigen that is present only in proliferating cells (7). Suzuki et al. (3) found a significant correlation between the proliferative potential of the epithelium in periapical lesions and intraepithelial CD1a-labeled cell density. Inflammatory infiltrate in periapical lesions has been studied by many authors (3,6,8-10), we believed it would be interesting to study the characteristics of infiltrating inflammatory cells and the proliferative potential of the epithelium, and to discuss the possible relation with CD1a-labeled cells, to improve the knowledge of the immunological mechanism in the etiopathogenesis of periapical lesions. The hypothesis that Langerhans cells are associated with T lymphocyte infiltration and proliferative potential of the epithelial tissue in periapical lesions is considered. The aim of this study is to determine the presence of Langerhans cells in periapical lesions, and correlate with inflammatory cell infiltration and epithelial cell proliferation.

Materials and Methods

Periapical surgery was carried out on 82 patients between January 2003 and January 2005. The indications for periapical surgery, based on the protocol of the Spanish Society of Oral Surgery were (11): 1) periapical disease affecting permanent teeth subjected to endodontic treatment, with the presence of pain or swelling, and repeated failure of root canal treatment; 2) periapical disease with pain or swelling and involving permanent teeth subjected to endodontic treatment with bridge abutments or teeth with posts presenting extraction difficulties; 3) symptomatic gutta-percha over-filling or foreign bodies presenting orthograde extraction difficulties; 4) radiotransparencies over 8 to 10 mm in diameter; and 5) endodontic treatment and periapical surgery in a single session. No periapical surgery was carried out in the acute phase or with chronic periapical abscess exacerbation. Patients with sufficient sample for histological and immunohistochemical analysis and with non-contributory medical histories were included. Twelve patients were excluded for absence of periapical lesion, analyzing 70 histological samples from 70 patients (43 women and 27 men); mean age was 34.9 years (range 16-54 years).

- **Histology and immunohistochemistry**

All biopsies were taken at the time of periapical surgery, and immediately fixed in 10% formaldehyde solution, with a surgical specimen/fixator volume ratio of 1/10. The samples were embedded in paraffin using an automated tissue processor. Microtome serial sections (6 to 8 microns) were later made with a Minot rotation microtome. Every fourth slide was deparaffinized and systematically stained with hematoxylin-eosin. Serial sections of original histological slices were treated (silinizated) for immunohistochemical staining. The immunohistochemistry (IHC) was done using an automated immunostainer. The IHC methods used were the peroxidase-antiperoxidase technique for polyclonal antibodies, and the avidin-biotin complex technique for monoclonal antibodies. In this study, marker CD1a was used to determine the presence of Langerhans cells, CD3 was used to determine the presence of T lymphocytes, and Ki67 to analyze the epithelial cell proliferation. The markers, clone, source and dilution used, are shown in Table 1.

Table 1. Markers used in immunohistochemical study.

<table>
<thead>
<tr>
<th>Test</th>
<th>Clone</th>
<th>Source</th>
<th>Dilution</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD1a</td>
<td>MTB-1</td>
<td>Novocastra Laboratories</td>
<td>Prediluted</td>
</tr>
<tr>
<td>CD3</td>
<td>UCHT1</td>
<td>Dakocytomation</td>
<td>1/50</td>
</tr>
<tr>
<td>Ki67</td>
<td>MIB-1</td>
<td>Dakocytomation</td>
<td>1/75</td>
</tr>
</tbody>
</table>

The histological sections were examined under a Bx45® microscope by two observers (FVS, CCG), assigning the result by consensus. The specimens were classified as radicular cyst, scar tissue or granuloma (10); the presence of epithelium in the granuloma was indicated, in which case being classified as epithelialized granuloma. The immunostaining density was established according to Santos et al. (12) criteria, by determining the intensity of staining of CD1a-positive cells in representative fields of all specimens. Specimens showing the largest and smallest number of CD1a-positive cells were used as reference and classified as presenting intense (3) and discrete (1) immunostaining, respectively. The other...
specimens were classified as presenting moderate (2) or none (0) immunostaining. The scale of Liapatas et al. (10), modified to a score from 0 to 3 was used to grade the intensity of CD3 and Ki67 immunostaining. The scale corresponds to the percentage of stained cells with each specific antibody compared to the total cellular infiltration; counting was scored from 0 to 3: 0) no cells stained; 1) weak staining or few cells stained (11-25%); 2) moderate staining or some cells stained (26-75%); 3) intense staining or many cells stained (more than 76%).

Results

Histological evaluation

Eighteen scar lesions, 6 periradicular cysts and 46 granulomas (of which 18 were epithelialized), were diagnosed.

Langerhans cells: CD1a

CD1a was seen in 32.8% (n=23) of the lesions: in all cysts (n=6) and in 72.2% of epithelialized granulomas (n=13), in 14.2% of granulomas without epithelium (n=4) and in none of the scar lesions. The immunostaining densities in the cyst lining were discrete in 2 cases (Figure 1), moderate in 3 and intense in 1; in the epithelialized granulomas a discrete density was seen in 5 lesions, moderate in 6 lesions and intense in 2. The 4 lesions without epithelium but with CD1a staining showed discrete density (Table 2).

Infiltrating inflammatory cells: CD3

Periapical lesions had diffuse inflammatory cell infiltration in the inner granulation tissues and perivascular infiltration in the outer fibrous tissues; several inflammatory cells were seen infiltrated within the epithelial components in these lesions. CD3 immunohistochemical staining was found in all lesions, but with different values in relation to histological subtypes (Table 2): in scar lesions the presence of lymphocytes was weak in 10 lesions and moderate in 8; in granulomas (pure and epithelialized) an intense immunostaining was seen in 28 lesions, moderate in 9 and weak in 9 lesions; and in radicular cysts the inflammatory cell density was moderate in all lesions (Figure 1).

Table 2. Immunostaining scores in relation to histological subtype of periapical lesions.

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Scores</th>
<th>Histological subtypes (number of lesions=70)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pure granuloma (n=28)</td>
</tr>
<tr>
<td>CD1a</td>
<td>0</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CD3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17</td>
</tr>
<tr>
<td>Ki67</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 1. A) Radicular cyst demonstrating immunoreactivity for CD1a (400x). B) Immunostaining for CD3 in a radicular cyst (200x). C) Moderate staining of Ki67 in a radicular cyst (100x).
cells and trigger specific T-cell immune responses. This lymph node, where, as mature DC, they activate naïve T cells and trigger specific T-cell immune responses. This causes clonal expansion of naïve T cells and their differentiation into effector and memory T cells. Such T cells migrate to the site of inflammation where, upon reactivation with local antigen presenting cells, they perform different effector functions. In chronic inflammation, such as periapical periodontitis, a number of DC are retained at the site and undergo local maturation (13).

Suzuki et al. (3) made an immunohistochemical analysis of CD1a-labeled Langerhans cells in 83 periapical lesions using antigen markers Ki-67 and topoisomerase IIα, observing immunostaining for these cells in all periapical lesions, in contrast to Santos et al. (12) who detected Langerhans cells in 45.5% of the lesions. Similar results were found in the present study, where positivity for CD1a was observed in 32.8% of lesions, which may be due to the presence of scar lesions and non epithelialized granulomas with very little immunostaining. On the other hand, Nilsen et al. (14), found no Langerhans cells in periapical inflammatory lesions using monoclonal antibodies (OKT6-positive cells). Gao et al. (15) found no Langerhans cells in the epithelial rests of Malassez, although some were found in epithelia within periapical granuloma and in most epithelial linings of odontogenic cysts; they concluded that the presence of immune cells in periapical granulomas and cysts suggests that cell-mediated and humoral immunoreactions occur in these lesions and may be associated with the epithelial proliferation within the periapical lesions. Langerhans cells (CD1a+) were identified, mostly in the epithelium (3,16).

Santos et al. (12) found a significant correlation between immunostaining and the lesion type, detecting LCs in 69.2% of the radicular cysts studied and in 11.1% of the granulomas; Suzuki et al. (3) observed immunostaining for these cells in 100% and 95% of this type of lesion, respectively. In the present study, LCs were seen in 100% of cysts and in 36.9% of granulomas. Santos et al. (12) related the decrease in LC number in some cysts to a process of cell apoptosis after antigen presentation to T cells; in addition, variations in the methods used and in immunohistochemical sensitivity may interfere with the results.

T lymphocytes play a central role in controlling and maintaining immune reactions and dominate in lesions presenting persistent antigens (17). Suzuki et al. (3) suggested that CD3 positive cells may be induced by CD1a-labeled cells in periapical lesions. Murase et al. (18) made an immunohistochemical demonstration of S-100 protein in Langerhans cells, observing an incidence of positive staining LCs in 22 cases out of 40 radicular cysts; they concluded that these cases were usually accompanied with a high degree of inflammatory infiltration in their lesions; on the contrary, the negative cases also generally lacked inflammatory responses. We observed a higher density of LCs in lesions with an intense and moderate inflammatory infiltrate (61.1% of epithelialized granulomas had an intense infiltrate and 100% of cysts had moderate), as also reported by other authors (3,12,19). Akhlaghi and Dourov (16), in a study based on 142 cysts, concluded that the LC number is not always correlated with an inflammatory condition. Santos et al. (12), believe that the inflammatory intensity is not only related to an increased amount of antigen in the lesion, but also to an exacerbated response of the defence mechanisms of the individual.

Inflammatory stimulation is thought to cause epithelial proliferation (20), Suzuki et al (3), observed a significant direct correlation between the density of CD1a-labeled cells and the proliferative potential of the epithelium. In this study nuclei positively stained for Ki67 antigen were seen in all epithelialized lesions, in which a higher density of LCs was also observed.

Conclusions
Langerhans cells appear to be associated with T lymphocyte infiltration and proliferative potential of the epithelial tissue in periapical lesions. Future studies of these relations in more periapical lesions, will significantly improve our knowledge of these immune cells.

References