Is PRP useful in alveolar cleft reconstruction?
Platelet-rich plasma in secondary alveoloplasty

Ramon Luaces-Rey 1, Jorge Arenaz-Búa 1, José-Luis López-Cedrún-Cembranos 1, Susana Herrero-Patiño 2, Sheyla Sironvalle-Soliva 1, Emma Iglesias-Candal 1, Maria Pombo-Castro 1

1 Department of Oral and Maxillofacial Surgery
2 Orthodontist of the Craniomaxillofacial Malformation Unit
A Coruña University Hospital

Correspondence:
Servicio de Cirugia Maxilofacial
Complejo Hospitalario A Coruña
As Xubias 84
15006, A Coruña, Spain
ramon.luaces.rey@sergas.es

Received: 29/07/2009
Accepted: 28/11/2009

Abstract
Objective: Cleft lip and palate is a congenital facial malformation with an established treatment protocol. Mixed dentition period is the best moment for correct maxillary bone defect with an alveoloplasty. The aim of this surgical procedure is to facilitate dental eruption, re-establish maxillary arch, close any oro-nasal communication, give support to nasal ala, and in some cases allow dental rehabilitation with osteointegrated implants.

Study design: Twenty cleft patients who underwent secondary alveoloplasty were included. In 10 of them autogenous bone graft were used and in other 10 autogenous bone and platelet-rich plasma (PRP) obtained from autogenous blood. Bone formation was compared by digital orthopantomography made on immediate post-operatory and 3 and 6 months after the surgery.

Results: No significant differences were found between both therapeutic groups on bone regeneration.

Conclusion: We do not find justified the use of PRP for alveoloplasty in cleft patients’ treatment protocol.

Key words: Cleft lip and palate, platelet-rich plasma, bone regeneration.
Platelet-rich plasma in secondary alveoloplasty

During the period 1999-2007, 64 alveoloplasties were performed in the Department of Oral and Maxillofacial Surgery in A Coruña University Hospital. 38 of these were secondary alveoloplasties (before canine eruption). Twenty patients who underwent secondary bone graft in the alveolar cleft were included in this study. In the first 10 patients autologous bone graft (iliac bone in most of them) and 1 cc of PRP was used. PRP was obtained from a self donation done the same day of the operation. In the other 10 patients the bone grafting was done without PRP.

In our protocol, radiographic control is done from 5 years old in order to determine the best moment for the surgery. Preoperative orthodontic treatment is done with the aim of expanding maxillary arch, teeth alignment and make a gap for the bone graft. Orthodontics continues for 8-12 weeks after the alveoloplasty. If the orthodontic arch wire crosses the alveolar cleft, it should be removed just before surgery. If the bilateral cleft, the orthodontic arch is placed back after the procedure in the operating room and maintained for 8 weeks in order to contribute to premaxilla and bone graft stability. Cancellous iliac bone was the used graft in most of cases. Root development is evaluated radiographically (periapical radiography or orthopantomography) to determine the appropriate moment for the alveoloplasty. All lip and palate cleft patients were candidates to undergo a secondary alveoloplasty. Naso-tracheal intubation by the non-affected side was used in unilateral clefts and oro-tracheal in bilateral cleft patients. Prophylactic administration of Amoxicillin-clavulanic acid was done half an hour before the surgery and antibiotic is maintained for 8 days after the operation.

Two surgical teams work at the same time, one obtaining the iliac crest graft and the other performing the alveoloplasty itself. No drain is used in any surgical field and all patients were operated by the same surgeon (JLC). This surgeon prepares the surgical field in the alveolar cleft, closes oro-nasal communication if exists, and performs the alveoloplasty itself with the bone obtained by the other surgical team. Boyne and Sands (1) described the procedure of grafting the cancellous iliac bone on the maxillary defect. The day of the operation 1cc of PRP was obtained from 10 cc of whole blood drawn from the patient. The Department of Hematology obtained the PRP by a double centrifuge of the specimen. In the operating room calcium chloride was added and the product is incubated for 3 minutes at 37°C until a bright red clot is obtained. Cancellous bone and PRP are mixed and the malleable material is inserted into the alveolar cleft. Gingival mucoperiosteal flaps should be closed tension-free. Periosteal incisions should be done if necessary. Closure is done with resorbable 4/0 material. Margins of the palatal flaps on the oro-nasal fistula course are refreshed, granulation tissue removed and watertight closure with resorbable 4/0 material is done. Both vestibular flaps are sutured between them along the course of the original fistula and to the palatal flaps on the alveolar ridge over the cleft area. Patients were discharged 24-48 hours after the surgery.

Bone formation on alveolar cleft was registered by digital orthopantomography obtained on immediate postoperative, at 3 and 6 months after the surgery. Bone increase was measured in a subjective but blind manner, by a gradual 1-4 scale (1 minimum bone formation, 4 maximum bone formation) scored by four blind observers, all of them experts surgeons from the Department of Oral and Maxillofacial Surgery. Previous calibration
process was needed between all the observers, in order to assess the agreement grade. Computerized tomography (CT) and biopsy were rejected because of economic and ethical reasons.

Results
Orthopantomography mean score was obtained from each of the 20 patients in the immediate post-operative and 3 and 6 months after the surgery. Bone increase between third and sixth month was calculated. The first group (PRP group) consisted on 6 men and 4 women with a mean age of 8.7 years. They were 7 unilateral and 3 bilateral clefts. In 1 case was employed tibial bone graft, in 2 cases the donor area was mandibular symphysis and iliac crest in the other 7 cases. The second group (non-PRP group) was composed by 7 men and 3 women with an average age of 9.1 years. Seven patients were unilateral cleft and three were bilateral. Iliac bone graft was used in all of them. Mean score of bone formation in each patient in the immediate post-operative and 3 and 6 months after the surgery is recorded in table 1. Bone increase between third and sixth month is observed too.

Statistical analysis was done with the Mann-Witney test and p-value of less than 0.05 was considered statistically significant. No statistically significant differences in bone formation were found between both groups in early post-operative (with PRP 1.32±0.38 and without PRP 1.89±0.76), neither after 3 months (with PRP 2.2±0.7 and without PRP 2.64±0.76) or after 6 months (with PRP 2.43±0.6 and without PRP 3.17±0.866). No statistically significant differences in bone increase in the period 0-3 months (with PRP 0.88±0.77 and without PRP 0.75±1.1) or the period 3-6 months (with PRP 0.23±0.5 and without PRP 0.53±0.64), or in 0-6 months (with PRP 1.1±0.8 and without PRP 1.2±1.1) were found too.

Discussion
PRP use in oral surgery was initially based on wound healing acceleration due to growth factor release from activated platelet (6). Eighty eight autologous grafts in human mandibles were done in one of most important initial studies. In half of them PRP was added, and

Table 1. Patients classification by age, sex, uni or bilateral cleft, kind of bone graft used, PRP addition or not, and their score on bone formation scale in immediate post-operative, at 3 months, at 6 months, and the increase between 3-6 months.

<table>
<thead>
<tr>
<th>PATIENT</th>
<th>Sex</th>
<th>Age</th>
<th>imme-</th>
<th>3 months</th>
<th>6months</th>
<th>3-6 months</th>
<th>Uni-</th>
<th>bone</th>
<th>PRP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>diate</td>
<td></td>
<td></td>
<td></td>
<td>bilat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>7y2m</td>
<td>1</td>
<td>2</td>
<td>3,3</td>
<td>1,3</td>
<td>U</td>
<td>iliac</td>
<td>YES</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>7y8m</td>
<td>1</td>
<td>3</td>
<td>3,3</td>
<td>1,3</td>
<td>U</td>
<td>iliac</td>
<td>YES</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>9y6m</td>
<td>1,3</td>
<td>1,7</td>
<td>1,7</td>
<td>0</td>
<td>U</td>
<td>iliac</td>
<td>YES</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>8y10m</td>
<td>1,3</td>
<td>1,7</td>
<td>2</td>
<td>0,3</td>
<td>U</td>
<td>iliac</td>
<td>YES</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>8y9m</td>
<td>1,3</td>
<td>1,7</td>
<td>1,7</td>
<td>0</td>
<td>U</td>
<td>tibial</td>
<td>YES</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>7y11m</td>
<td>2</td>
<td>2,3</td>
<td>2,3</td>
<td>0</td>
<td>B</td>
<td>symphysis</td>
<td>YES</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>7y10m</td>
<td>1,3</td>
<td>3,7</td>
<td>3</td>
<td>-0,7</td>
<td>B</td>
<td>symphysis</td>
<td>YES</td>
</tr>
<tr>
<td>8</td>
<td>F</td>
<td>9y</td>
<td>1</td>
<td>1,3</td>
<td>2</td>
<td>0,7</td>
<td>U</td>
<td>iliac</td>
<td>YES</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>8y9m</td>
<td>2</td>
<td>2,3</td>
<td>2,3</td>
<td>0</td>
<td>U</td>
<td>iliac</td>
<td>YES</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>10y7m</td>
<td>1</td>
<td>2,3</td>
<td>2,7</td>
<td>0,3</td>
<td>B</td>
<td>iliac</td>
<td>YES</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>6y11m</td>
<td>3,3</td>
<td>2,7</td>
<td>3,3</td>
<td>0,6</td>
<td>U</td>
<td>iliac</td>
<td>NO</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>9y3m</td>
<td>2,7</td>
<td>1,3</td>
<td>1,7</td>
<td>0,3</td>
<td>U</td>
<td>iliac</td>
<td>NO</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>10y2m</td>
<td>1,7</td>
<td>3,7</td>
<td>3</td>
<td>-0,7</td>
<td>U</td>
<td>iliac</td>
<td>NO</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>8y3m</td>
<td>1,3</td>
<td>2</td>
<td>3,3</td>
<td>1,3</td>
<td>U</td>
<td>iliac</td>
<td>NO</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>8y</td>
<td>1,3</td>
<td>2</td>
<td>1,7</td>
<td>-0,3</td>
<td>B</td>
<td>iliac</td>
<td>NO</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>8y7m</td>
<td>2</td>
<td>2,3</td>
<td>3</td>
<td>1</td>
<td>B</td>
<td>iliac</td>
<td>NO</td>
</tr>
<tr>
<td>17</td>
<td>M</td>
<td>11y6m</td>
<td>1</td>
<td>2,7</td>
<td>4</td>
<td>1,3</td>
<td>U</td>
<td>iliac</td>
<td>NO</td>
</tr>
<tr>
<td>18</td>
<td>F</td>
<td>7y2m</td>
<td>2,3</td>
<td>3</td>
<td>3,7</td>
<td>0,7</td>
<td>U</td>
<td>iliac</td>
<td>NO</td>
</tr>
<tr>
<td>19</td>
<td>M</td>
<td>8y11m</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>B</td>
<td>iliac</td>
<td>NO</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>12y10m</td>
<td>2,3</td>
<td>3,7</td>
<td>4</td>
<td>0,33</td>
<td>U</td>
<td>iliac</td>
<td>NO</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>33,1</td>
<td>48,4</td>
<td>56</td>
<td>7,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEAN</td>
<td></td>
<td></td>
<td></td>
<td>8,8years</td>
<td>1,655</td>
<td>2,42</td>
<td>2,8</td>
<td>0,37</td>
<td></td>
</tr>
</tbody>
</table>

M: male; F: female; m: months; U: unilateral; B: bilateral.
higher bone maturity and density than in control group was showed radiographically and histomorphometrically (7,9). Many works have supported the use of PRP in oral surgery, being accepted its utility in periodontal and soft tissue regeneration (4,6-8). But other authors argue the lack of scientific evidence for defending the use of PRP in bone regeneration and recommend the surgeon to maintain a critical mind (10-13). In one of the most important reported metaanalysis the absence of reliable evidence of any active agent such as bone-promoter molecules or PRP in dental implants treatment is remarked (11). Beneficial effects of PRP in periodontal defects have been probed recently. But efficacy evidence in sinus lift remains weak and these authors can not conclude any other PRP application in odontology based on their reviewed literature (12).

Boyne and Sands (1) started particulated cancellous bone grafting on alveolar clefts during mixed dentition combined with orthodontic treatment in order to contribute to maxillary stability, allow dental eruption thought the grafted bone and facilitate posterior orthodontic treatment. Most of the authors agree that secondary bone grafting during mixed dentition period does not affect significantly to facial growth, because at the 8th year of life most of the maxillary development has already happened. Surgical indication was done in accordance with the orthodontist, based on growth, orthodontic and prosthetic criteria. An only surgeon (JLC) operated all patients following the same surgical technique. Iliac crest is the preferred donor site in this kind of patients. Other donor sites as tibia or chin are only chosen on small size defects, because of the limited amount of available bone, on an attempt of avoiding temporal sequel after harvesting iliac crest grafts. All mucoperiosteal flaps were designed to cover the bone graft with attached gum. Some authors recommend PRP use in the alveolooplasties because it facilitates bone regeneration (2) and soft tissue healing (5). Other works do not find any long term advantage in use PRP mixed with autologous bone (11).

Secondary alveolooplasty efficacy was supported by authors as Matsui et al. (14) who found that most of cleft patients in his serie had spontaneous canine eruption after real secondary alveolooplasty. Just very few of them needed orthodontic traction. He found relation between width bone defect on nasal side and canine surgical exposure requirement. The way of checking the bone increase remains controversial. Van der Meij et al. (15) proved by CT the remaining grafted bone 1 year after the surgery. His work does not find significant differences between late and early secondary alveolooplasty. But a lesser degree of bone persistence on bilateral cleft (45%) than in unilateral cleft (70%) was showed. In spite of that, bone amount was enough for canine eruption. Performing secondary alveolooplasty, Trindade et al. (16) gets 95% success rate in unilateral clefts and defends periapical radiography to confirm the success of the grafted bone. However Feichtinger et al. (17) making CT 3D preoperatively and 1, 2 and 3 years postoperatively, describes a bone loss of 49,5% on the bucco-palatal dimension of the bone transplant during the first year, and remaining constant the following 2 years. He rejects conventional two-dimension radiographs to quantify bone loss. He supports a higher success rate when the gap is closed orthodontically in a short period of time. Oyama et al. (2) compares tertiary alveolooplasty in 7 cleft patients using iliac crest with PRP and another 7 without PRP. He uses CT 3D before and 6 months after the surgery and proves than PRP group formed more bone. He agrees that there is no widely accepted method for bone grafting quantification and suggests that bone formation quantity and quality should be tested. We ruled out bone biopsy and CT before and after the surgery because of the radiation exposure in growing period patients. Lee et al. (18) compares 2 alveolooplasty groups of 35 patients each one with and without PRP. He came to conclusion that PRP is not enough to avoid alveolar graft resorption in secondary alveolooplasty. He applies specific software to evaluate bone formation through sample dental radiographies. We tried to measure bone increase using a computer programme in conjunction with the Radiology Department. An adjacent tooth was used as a correction factor that remains constant in its radiopacity in order to compare formed bone. But the complexity of the anatomical area, erupting teeth and orthodontic appliances prevented to obtain predictable results, so the study was abandoned. Cone Beam Computed Tomography (CBCT) is gaining ground in odontology and maxillofacial surgery (19). Its high imaging quality and anatomical precision in pre-maxilla (20) would be very useful in a work like this to evaluate bone density. But nowadays economic cost is its great handicap. This study was carried out in a public hospital, and it is impossible to achieve this kind of diagnostic imaging there.

Conclusions

Alveolooplasty constitutes an excellent surgical method for correcting alveolar cleft. It allows closing oro-nasal fistula, preserving dental health, and performing a correct orthodontic treatment. We consider acceptable our results, agree with reviewed literature. Wide base mucoperiosteal gingival flaps have excellent vascularization and allow a tension-free closure on the grafted alveolus. Our design modification let raise an easy flap with optimal mobility. It does not produce papillar or vestibular sulcus modifications and allows healthy periodontal gum for teeth eruption and successful orthodontic treatment. We do not find evidence for PRP application to facilitate bone formation in secondary alveolooplasty...
of cleft patients, although its consistency makes easier handling and packing the graft. Our series is too small to obtain conclusive results. More prospective randomized controlled studies are needed to achieve definitive data against or in favour of PRP use on alveoloplasty of cleft patients. There are still two important points with no agreement. The first one is to establish a standard method of obtaining PRP so that its properties were comparable in different studies. The second point is to accord an accepted way to quantify bone increase after the alveoloplasty.

References

Acknowledgments
The authors thank to Ms. Marisa Diaz Salmerón (FirstAssist, Purley, United Kingdom) for help in reviewing the manuscript for English syntax.