Porto T, Roperto R, Akkus A, Akkus O,  Porto-Neto S, Teich S, Lang L, Campos E. Mechanical properties and DIC analyses of CAD/CAM materials. J Clin Exp Dent. 2016;8(5):e512-6.

 

doi:10.4317/jced.53014

http://dx.doi.org/doi:10.4317/jced.53014

 

References

1. Yang R, Arola D, Han Z, Zhang X. A comparison of the fracture resistance of three machinable ceramics after thermal and mechanical fatigue. J Prosthet Dent. 2014;112:878-85.
http://dx.doi.org/10.1016/j.prosdent.2014.03.005
PMid:24819527

 

2. Kawakami Y, Takeshige F, Hayashi M, Ebisu S. Fatigue of tooth-colored restoratives in aqueous environment. Dent Mat J. 2007;26:1-6.
http://dx.doi.org/10.4012/dmj.26.1

 

3. Ruschel VC, Maia HP, Lopes GC. Influence of external and internal surface roughness modifications on ceramic flexural strength. J Prosthet Dent. 2014;112:903-8.
http://dx.doi.org/10.1016/j.prosdent.2014.04.003
PMid:24819531

 

4. Helvey G. A History of dental ceramics. CompendContinEduc Dent. 2010;31:309-11.
PMid:20461962

 

5. McLean JW, Hughes TH. The reinforcement of dental ceramic with ceramic oxides. Br Dent J. 1965;119:251-67.
PMid:5212704

 

6. Della Bona A, Corazza PH, Zhang Y. Characterization of a polymer-infiltrated-ceramic-network material. Dent Mater. 2014;30:564-9.
http://dx.doi.org/10.1016/j.dental.2014.02.019
PMid:24656471 PMCid:PMC4651623

 

7. Lauvahutanon S, Takahashi H, Shiozawa M, Iwasaki N, Asakawa Y, Oki M, et al. Mechanical properties of composite resin blocks for CAD/CAM. Dent Mater J. 2014;33:705-10.
http://dx.doi.org/10.4012/dmj.2014-208
PMid:25273052

 

8. Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM resin nano ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater. 2014;30:954-62.
http://dx.doi.org/10.1016/j.dental.2014.05.018
PMid:25037897

 

9. Tsitrou EA, Northeast SE, van Noort R. Brittlenes index of machinable dental materials and its relation to the marginal chipping factor. J Dent. 2007;35:897-902.
http://dx.doi.org/10.1016/j.jdent.2007.07.002
PMid:17977638

 

10. Lebon N, Tapie L, Vennat E, Mawussi B. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J Prosthet Dent. 2015;114:236-47.
http://dx.doi.org/10.1016/j.prosdent.2014.12.021
PMid:25957240

 

11. Albero A, Pascual A, Camps I, Grau-Benitez M. Comparative characterization of a novel cad-cam polymer-infiltrated-ceramic-network. J Clin Exp Dent. 2015;7:e495-500.
http://dx.doi.org/10.4317/jced.52521
PMid:26535096 PMCid:PMC4628804

 

12. Harada A, Nakamura K, Kanno T, Inagaki R, Örtengren U, Niwano Y, et al. Fracture resistance of computer-aided design/computer-aided manufacturing-generated composite resin-based molar crowns. Eur J Oral Sci. 2015;123:122-9.
http://dx.doi.org/10.1111/eos.12173
PMid:25683749

 

13. Duan Y, Griggs JA. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite. J Dent. 2015;43:742-9.
http://dx.doi.org/10.1016/j.jdent.2015.01.008
PMid:25625675

 

14. Alshehri SA. An Investigation into role of core porcelain thickness and lamination in determining the flexural strength of in-ceram dental materials. Journal of Prosthodontics-Implant Esthetic and Reconstruitve Dentistry. 2011;20:261-6.
http://dx.doi.org/10.1111/j.1532-849x.2011.00707.x

 

15. Nandini S. Indirect resin composites. J Conserv Dent. 2010;13:184-94.
http://dx.doi.org/10.4103/0972-0707.73377
PMid:21217945 PMCid:PMC3010022

 

16. Thompson VP, Rekow DE. Dental ceramics and the molar crown testing ground. Journal of Applied Oral Science: Revista FOB. 2004;12:26-36.
http://dx.doi.org/10.1590/S1678-77572004000500004
PMid:20959944

 

17. Lawn BR, Marshall DB. Hardness, Toughness, and Brittleness: An Indentation Analysis. J Am Ceramic Soc. 1979;62:347-50.
http://dx.doi.org/10.1111/j.1151-2916.1979.tb19075.x

 

18. Paradigm™ MZ100 Block: Technical Product Profile. St. Paul, MN, USA: 3M ESPE. 2000.1-28.

 

19. Vitablocs® Mark II: Product Information. VITA Zahnfabrik H. Rauter GmbH & Co. Bad Säckingen, Germany, date of issue 04.15, version (02), 1-6.

 

20. ASTM C1421-16, Standard Test Methods for Determination of Fracture Toughness of Advanced Ceramics at Ambient Temperature, ASTM International, West Conshohocken, PA, 2016.

 

21. Larsen IB, Freund M, Munksgaard EC. Change in surface hardness of BisGMA/TEGDMA polymer due to enzymatic action. J Dent Res. 1992;71:1851-3.
http://dx.doi.org/10.1177/00220345920710111701
PMid:1401451

 

22. Leung BTW, Tsoi JKH, Matinlinna JP, Pow EHN. Comparison of mechanical properties of three machinable ceramics with an experimental fluorophlogopite glass ceramic. J Prosthet Dent. 2015;114:440-6.
http://dx.doi.org/10.1016/j.prosdent.2015.02.024
PMid:26013069

 

23. Menees TS, Lawson NC, Beck PR, Burgess JO. Influence of particle abrasion or hydrofluoric acid etching on lithium disilicate flexural strength. J Prosthet Dent. 2014;112:1164-70.
http://dx.doi.org/10.1016/j.prosdent.2014.04.021
PMid:24951390

 

24. Awada A, Nathanson D. Mechanical properties of resin-ceramic CAD/CAM restorative materials. J Prosthet Dent. 2015;114:587-93.
http://dx.doi.org/10.1016/j.prosdent.2015.04.016
PMid:26141648

25. Bao Y, Zhou Y. A new method for precracking beam for fracture toughness experiments. J Am Ceram Soc. 2006;89:1118-21.
http://dx.doi.org/10.1111/j.1551-2916.2005.00824.x