Fatene N, Mansouri S, Elkhalfi B, Berrada M, Mounaji K, Soukri A. Assessment of the electrochemical behaviour of Nickel-Titanium-based orthodontic wires: Effect of some natural corrosion inhibitors in comparison with fluoride. J Clin Exp Dent. 2019;11(5):e414-20.

 

doi:10.4317/jced.55601

http://dx.doi.org/doi:10.4317/jced.55601

 

References

1. Kassab EJ, Gomes JP. Assessment of nickel titanium and beta titanium corrosion resistance behavior in fluoride and chloride environments. The Angle Orthod. 2013; 83:864-869.
https://doi.org/10.2319/091712-740.1

PMid:23448158

 

 

2. Gravina MA, Canavarro C, Elias CN, Chaves MdGAM, Brunharo IHVP, Quintão CCA. Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics. Dent Press J Orthod. 2014;19:69-76.
https://doi.org/10.1590/2176-9451.19.1.069-076.oar
PMCid:PMC4299426

 

3. Jaber LCL, Rodrigues JA, Amaral FLB, FranÇA FMG, Basting RT, Turssi CP. Degradation of orthodontic wires under simulated cariogenic and erosive conditions. Bras Oral Res. 2014;28:1-6.
https://doi.org/10.1590/1807-3107BOR-2014.vol28.0024

PMid:25098823

 

4. Huang H. Ion release from NiTi orthodontic wires in artificial saliva with various acidities. Biomaterials. 2003;24:3585-3592.
https://doi.org/10.1016/S0142-9612(03)00188-1

PMid:12809787

 

5. Kao CT, Huang TH. Variations in surface characteristics and corrosion behaviour of metal brackets and wires in different electrolyte solutions. Eur J Orthod. 2010;32:555-560.
https://doi.org/10.1093/ejo/cjp146

PMid:20139132

 

6. Lee TH, Huang TK, Lin SY, Chen LK, Chou MY, Huang HH. Corrosion resistance of different nickel-titanium archwires in acidic fluoride-containing artificial saliva. The Angle Orthod. 2010;80:547-553.
https://doi.org/10.2319/042909-235.1

PMid:20050751

 

7. Katic V, Curkovic HO, Semenski D, Barsic G, Marusic K, Spalj S. Influence of surface layer on mechanical and corrosion properties of nickel-titanium orthodontic wires. The Angle Orthod. 2014;84:1041-1048.
https://doi.org/10.2319/090413-651.1

PMid:24654939

 

8. Danaei SM, Safavi A, Roeinpeikar SM, Oshagh M, Iranpour S, Omidkhoda M. Ion release from orthodontic brackets in 3 mouthwashes: an in-vitro study. Am J Orthod and Dentofac Orthop. 2011;139:730-734.
https://doi.org/10.1016/j.ajodo.2011.03.004

PMid:21640878

 

9. Kao CT, Ding SJ, He H, Chou MY, Huang TH. Cytotoxicity of orthodontic wire corroded in fluoride solution in vitro. Angle Orthod. 2007;77:349-54.
https://doi.org/10.2319/0003-3219(2007)077[0349:COOWCI]2.0.CO;2

PMid:17319773

 

10. In-Hye Kim, Hyo-Sang Park, Young Kyung Kim, Kyo-Han Kim, Tae-Yub Kwon. Comparative short-term in vitro analysis of mutans streptococci adhesion on aesthetic, nickel-titanium, and stainless-steel arch wires. Angle Orthod. 2014;84:680-686.
https://doi.org/10.2319/061713-456.1
PMid:24308530

 

11. Watanabe I, Watanabe E. Surface changes induced by fluoride prophylactic agents on titanium-based orthodontic wires. Am J Orthod and Dentofac Orthop. 2003;123:653-656.
https://doi.org/10.1016/S0889-5406(03)00197-5

PMid:12806345

 

12. Schiff N, Grosgogeat B, Lissac M, Dalard F. Influence of fluoridated mouthwashes on corrosion resistance of orthodontics wires. Biomaterials. 2004;25:4535-4542.
https://doi.org/10.1016/j.biomaterials.2003.11.042

PMid:15120498

13. Walker MP, White RJ, Kula KS. Effect of fluoride prophylactic agents on the mechanical properties of nickel-titanium-based orthodontic wires. Am J Orthod and Dentofac Orthop. 2005;127:662-669.
https://doi.org/10.1016/j.ajodo.2005.01.015

PMid:15953890

 

14. Li X, Wang J, Han EH, Ke W. Influence of fluoride and chloride on corrosion behaviour of NiTi orthodontic wires. Acta Biomaterialia. 2007;3:807-815.
https://doi.org/10.1016/j.actbio.2007.02.002

PMid:17467350

 

15. Creeth JE, Parkinson CR, Burnett GR, Sanyal S, Lippert F, Zero DT, et al. Effects of a sodium fluoride- and phytate-containing dentifrice on remineralisation of enamel erosive lesions-an in situ randomised clinical study. Clin Oral Invest. 2018;22:2543-2552.
https://doi.org/10.1007/s00784-018-2351-z

PMid:29423713 PMCid:PMC6097037

 

16. Ostovari A, Hoseinieh SM, Peikari M, Shadizadeh SR, Hashemi SJ. Corrosion inhibition of mild steel in 1M HCl solution by henna extract: A comparative study of the inhibition by henna and its constituents (Lawsone, Gallic acid, α-d-Glucose and Tannic acid). Corrosion Science. 2009;51:1935-1949.
https://doi.org/10.1016/j.corsci.2009.05.024

 

17. Abiola OK, Tobun Y. Cocos nucifera L. Water as green corrosion inhibitor for acid corrosion of aluminium in HCl solution. Chi Chem Lett. 2010;21:1449-1452.
https://doi.org/10.1016/j.cclet.2010.07.008

 

18. Bouyanzer A, Hammouti B. A study of anti-corrosive effects of Artemisia oil on steel. Pigment & Resin Technology. 2004;33:287-292.
https://doi.org/10.1108/03699420410560489

 

19. L. Bammou MM, R. Salghi, A. Bouyanzer, S.S. Al-Deyab, L. Bazzi, B. Hammouti. Inhibition Effect of Natural Artemisia Oils Towards Tinplate Corrosion in HCl solution: Chemical Characterization and Electrochemical Study. Int J Electrochem Sci. 2011; 6: 1454-1467.

 

20. Archana Saxena As, Deepti Saxena, And Praveen Jain. Corrosion Inhibition and Adsorption Behavior of Clove Oil on Iron in Acidic Medium. E-Journal of Chemistry. 2012;9:2044-2051.
https://doi.org/10.1155/2012/764381

 

21. Najoie Filali-Ansari. Antioxidant properties of leaves and seeds hydromethanolic extracts from Celtis australis. J Chem Biol and Physi Sci. 2005;5:2834-43.

 

22. CHA JD. Chemical composition and antibacterial activity of essential oil from Artemisia feddei. J Microbiol Biotechnol. 2007;17:2061-2065.

PMid:18167456

 

23. Inouye S, Takahashi M, Abe S. Inhibitory activity of hydrosols, herbal teas and related essential oils against filament formation and the growth of Candida albicans. Jpn J Med Mycol. 2009;50:243-51.
https://doi.org/10.3314/jjmm.50.243

PMid:19942796

 

24. Tomi K, Kitao M, Konishi N, Murakami H, Matsumura Y, Hayashi T. Enantioselective GC-MS analysis of volatile components from rosemary (Rosmarinus officinalis L.) essential oils and hydrosols. Bioscience, Biotechnology, and Biochemistry. 2016;80:840-847.
https://doi.org/10.1080/09168451.2016.1146066

PMid:26923429

 

25. Hamedi A, Pasdaran A, Zebarjad Z, Moein M. A Survey on Chemical Constituents and Indications of Aromatic Waters Soft Drinks (Hydrosols) Used in Persian Nutrition Culture and Folk Medicine for Neurological Disorders and Mental Health. J Evid Based Complement Alternat Med. 2017;22:744-752.
https://doi.org/10.1177/2156587217714145

PMid:28633539 PMCid:PMC5871290

 

26. Theodore Eliades AEA. In vivo aging of orthodontic alloys: Implications for corrosion potential, Nickel release, and biocompatibility. Angle Orthod. 2002;72:222-237.

PMid:12071606

 

27. Meher G, Chakraborty H. Influence of Eugenol on the Organization and Dynamics of Lipid Membranes: A Phase-Dependent Study. Langmuir 2018;34:2344-2351.
https://doi.org/10.1021/acs.langmuir.7b03595

PMid:29323916

 

28. Da Silva FFM, Monte FJQ, de Lemos TLG, do Nascimento PGG, de Medeiros Costa AK, de Paiva LMM. Eugenol derivatives: synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem Cent J. 2018;12:34.
https://doi.org/10.1186/s13065-018-0407-4

PMid:29611004 PMCid:PMC5880794