Juntavee N, Serirojanakul P. Influence of different veneering techniques and thermal tempering on flexural strength of ceramic veneered yttria partially stabilized tetragonal zirconia polycrystalline restoration. J Clin Exp Dent. 2019;11(5):e421-31.

 

doi:10.4317/jced.55722

http://dx.doi.org/doi:10.4317/jced.55722

 

References

1. Guess PC, Schultheis S, Bonfante EA, Coelho PG, Ferencz JL, Silva NR. All-ceramic systems: laboratory and clinical performance. Dent clin North Am. 2011;55:333-352.
https://doi.org/10.1016/j.cden.2011.01.005
PMid:21473997

 

2. Miyazaki T, Nakamura T, Matsumura H, Ban S, Kobayashi T. Current status of zirconia restoration. J Prosthodont Res. 2013;5:236-261.
https://doi.org/10.1016/j.jpor.2013.09.001
PMid:24140561

 

3. Juntavee N, Sirisathit I. Marginal accuracy of computer-aided design- and computer-aided manufacturing-fabricated full-arch zirconia restoration. Clin Cosmet Investig Dent. 2018;10:9-17.
https://doi.org/10.2147/CCIDE.S154156
PMid:29497334 PMCid:PMC5818859

 

4. Schmitter M, Mueller D, Rues S. Chipping behaviour of all-ceramic crowns with zirconia framework and CAD/CAM manufactured veneer. J Dent. 2012;40:154-162.
https://doi.org/10.1016/j.jdent.2011.12.007
PMid:22197634

 

5. Vigolo P, Mutinelli S. Evaluation of Zirconium-Oxide-Based Ceramic Single-Unit Posterior Fixed Dental Prostheses (FDPs) Generated with Two CAD/CAM Systems Compared to Porcelain-Fused-to-Metal Single-Unit Posterior FDPs: A 5-Year Clinical Prospective Study. J Prosthodont. 2012;21:265-269.
https://doi.org/10.1111/j.1532-849X.2011.00825.x
PMid:22339945

 

6. Pjetursson BE, Sailer I, Makarov NA, Zwahlen M, Thoma DS. All-ceramic or metal-ceramic tooth-supported fixed dental prostheses (FDPs)? A systematic review of the survival and complication rates. Part II: Multiple-unit FDPs. Dent Mater. 2015;31;624-639.
https://doi.org/10.1016/j.dental.2015.02.013

PMid:25935732

 

7. Guess PC, Bonfante EA, Silva NR, Coelho PG, Thompson VP. Effect of core design and veneering technique on damage and reliability of Y-TZP-supported crowns. Dent Mater. 2013;29:307-16.
https://doi.org/10.1016/j.dental.2012.11.012
PMid:23228337

 

8. Tang X, Nakamura T, Usami H, Wakabavashi K, Yatani H. Effects of multiple firings on the mechanical properties and microstructure of veneering ceramics for zirconia frameworks. J Dent. 2012;40:372-380.
https://doi.org/10.1016/j.jdent.2012.07.009
https://doi.org/10.1016/j.jdent.2012.01.014
PMid:22330322

 

9. Lima JM, Souza AC, Anami LC, Bottino MA, Melo RM, Souza RO. Effects of thickness, processing technique, and cooling rate protocol on the flexural strength of a bilayer ceramic system. Dent Mater. 2013;29:1063-1072.
https://doi.org/10.1016/j.dental.2013.07.019
https://doi.org/10.1016/j.dental.2013.08.032
PMid:23957933

 

10. Nadja N, Andreas B, Caroline S, Christoph H, Irena S. A randomized controlled clinical trial of 3-unit posterior zirconia-ceramic fixed dental prostheses (FDP) with layered or pressed veneerin ceramics: 3-year results. J Dent. 2015;43:1365-1370.
https://doi.org/10.1016/j.jdent.2015.07.013
PMid:26234623

 

11. Juntavee N, Dangsuwan C. Role of coefficient of thermal expansion on bond strength of ceramic veneered yttrium-stabilizes zirconia. J Clin Exp Dent. 2018;10:e279-286.
https://doi.org/10.4317/jced.54605

PMid:29721230 PMCid:PMC5923890

 

12. Choi JE, Waddell JN, Torr B, Swain MV. Pressed ceramics onto zirconia. Part 1: Comparison of crystalline phases pres- ent, adhesion to a zirconia system and flexural strength. Dent Mater. 2011;27:1204-1212.
https://doi.org/10.1016/j.dental.2011.08.006
PMid:21958727

 

13. Kuriyama S, Terui Y, Higuchi D, Goto D, Hotta Y, Manabe A, et al. Novel fabrication method for zirconia restorations: bonding strength of machinable ceramic to zirconia with resin cements. Dent Mater J. 2011;30:419-424.
https://doi.org/10.4012/dmj.2010-213
PMid:21597207

 

14. Tan JP, Sederstrom D, Polansky JR, McLaren EA, White SN. The use of slow heating and slow cooling regimens to strengthen porcelain fused to zirconia. J Prosthet Dent. 2012;107:163-169.
https://doi.org/10.1016/S0022-3913(12)60050-X

 

15. Larsson C, El Madhoun S, Wennerberg A, Vult von Steyern P. Fracture strength of yttria-stabilized tetragonal zirconia poly- crystals crowns with different design: an in vitro study. Clin Oral Implants Res. 2012;23:820-826.
https://doi.org/10.1111/j.1600-0501.2011.02224.x
PMid:21635559

 

16. Swain MV. Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures. Acta Biomater. 2009;5:1668-1677.
https://doi.org/10.1016/j.actbio.2008.12.016
PMid:19201268

 

17. Guazzato M, Walton TR, Franklin W, Davis G, Bohl C, Klineberg I. Influence of thickness and cooling rate on development of spontaneous cracks in porcelain/zirconia structures. Aust Dent J. 2010;55:306-310.
https://doi.org/10.1111/j.1834-7819.2010.01239.x
PMid:20887519

 

18. Mainjot AK, Schajer GS, Vanheusden AJ, Sadoun MJ. Influence of cooling rate on residual stress profile in veneering ceramic: measurement by hole-drilling. Dent Mater. 2011;27:906-914.
https://doi.org/10.1016/j.dental.2010.12.002
https://doi.org/10.1016/j.dental.2011.05.005
PMid:21676454

 

19. Belli R, Frankenberger R, Appelt A, Schmitt J, Baratieri LN, Greil P, et al. Thermal-induced residual stresses affect the lifetime of zirconia-veneer crowns. Dent Mater. 2013;29:181-190.
https://doi.org/10.1016/j.dental.2012.11.015
PMid:23261021

 

20. Belli R, Monteiro S Jr, Baratieri LN, Katte H, Petschelt A, Lohbauer U. A photoelastic assessment of residual stresses in zirconia-veneer crowns. J Dent Res. 2012;91:316-320.
https://doi.org/10.1177/0022034511435100
PMid:22262632

 

21. Meira JB, Reis BR, Tanaka CB, Ballester RY, Cesar PF, Versluis A, et al. Residual stresses in Y-TZP crowns due to changes in the thermal contraction coefficient of veneers. Dent Mater. 2013;29:594-601.
https://doi.org/10.1016/j.dental.2013.03.012
PMid:23561942

 

22. Göstemeyer G, Jendras M, Dittmer MP, Bach F, Stiesch M, Kohorst P. Influence of cooling rate on zirconia/veneer interfacial adhesion. Acta Biomater. 2010;6:4532-4538.
https://doi.org/10.1016/j.actbio.2010.06.026
PMid:20601242

 

23. Almeida AA Jr, Longhini D, Domingues NB, Santos C, Adabo GL. Effects of extreme cooling methods on mechanical properties and shear bond strength of bilayered porcelain/3Y-TZP specimens. J Dent. 2013;41:356- 362.
https://doi.org/10.1016/j.jdent.2013.01.005
PMid:23353069

 

24. DeHoff PH, Barrett AA, Lee RB, Anusavice KJ. Thermal compatibility of dental ceramic systems using cylindrical and spherical geometries. Dent Mater. 2008;24:744-752.
https://doi.org/10.1016/j.dental.2007.08.008
PMid:17949805 PMCid:PMC2684959

 

25. Zeighami S, Mahgoli H, Farid F, Azari A. The Effect of Multiple Firings on Microtensile Bond Strength of Core-Veneer Zirconia-Based All-Ceramic Restorations. J Prosthodont. 2013;22:49-53.
https://doi.org/10.1111/j.1532-849X.2012.00889.x
PMid:22762412

 

26. De Kler M, De Jager N, Meegdes M, Van Der Zel JM. Influence of thermal expansion mismatch and fatigue loading on phase changes in porcelain veneered Y-TZP zirconia discs. J Oral Rehabil. 2007;34:841-847.
https://doi.org/10.1111/j.1365-2842.2006.01675.x
PMid:17919251

 

27. Tsalouchou E, Cattell MJ, Knowles JC, Pittayachawan P, McDonald A. Fatigue and fracture properties of yttria partially stabilized zirconia crown systems. Dent Mater. 2008;24:308-318.
https://doi.org/10.1016/j.dental.2007.05.011
PMid:17681371

 

28. Benetti P, Kelly JR, Della Bona A. Analysis of thermal distributions in veneered zirconia and metal restorations during firing. Dent Mater. 2013;29:1166-1172.
https://doi.org/10.1016/j.dental.2013.08.212
PMid:24075225

 

29. Pabst W, Havrda J, Gregorová E, Krčmová B. Alumina toughed Zirconia made by room temperature extrusion of ceramic paste. Ceramics-Silikáty. 2000;44:41-47.

 

30. Stefanic G, Grzeta B, Popovic S, Music S. In situ Phase Analysis of the Thermal Decomposition Products of Zirconium Salts. Croatica Chemica Acta. 1999;72:395-412.