Tribst JPM, Dal Piva AMO, Madruga CFL, Valera MC, Bresciani E, Bottino MA, de Melo RM. The impact of restorative material and ceramic thickness on CAD\CAM endocrowns. J Clin Exp Dent. 2019;11(11):e969-77.

 

doi:10.4317/jced.56002

http://dx.doi.org/10.4317/jced.56002

________________________________________________________________________________________________________________________________________

 

References

1. Nawafleh N, Hatamleh MM, Öchsner A, Mack F. The impact of core/veneer thickness ratio and cyclic loading on fracture resistance of lithium disilicate crown. J Prosthodont. 2018;27:75-82.
https://doi.org/10.1111/jopr.12473
PMid:26965298

 

2. Melo Freire CA, Borges GA, Caldas D, Santos RS, Ignácio SA, Mazur RF. Marginal adaptation and quality of interfaces in lithium disilicate crowns - influence of manufacturing and cementation techniques. Oper Dent. 2017;42:185-95.
https://doi.org/10.2341/15-288-L
PMid:27802123

 

3. Taha D, Spintzyk S, Schille C, Sabet A, Wahsh M, Salah T, et al. Fracture resistance and failure modes of polymer infiltrated ceramic endocrown restorations with variations in margin design and occlusal thickness. J Prosthodont Res. 2017;S1883-1958:30117-222.

PMid: 29241944

 

4. Rocca GT, Daher R, Saratti CM, Sedlacek R, Suchy T, Feilzer AJ, et al. Restoration of severely damaged endodontically treated premolars: The influence of the endo-core length on marginal integrity and fatigue resistance of lithium disilicate CAD-CAM ceramic endocrowns. J Dent. 2018;68:41-50.
https://doi.org/10.1016/j.jdent.2017.10.011
PMid:29107134

 

5. Dal Piva AMO, Tribst JPM, Borges ALS, Souza ROAE, Bottino MA. CAD-FEA modeling and analysis of different full crown monolithic restorations. Dent Mater. 2018;34:1342-50.
https://doi.org/10.1016/j.dental.2018.06.024
PMid:29934125

 

6. Tribst J, Anami LC, Özcan M, Bottino MA, Melo RM, Saavedra G. Self-etching primers vs acid conditioning: impact on bond strength between ceramics and resin cement. Oper Dent. 2018;43:372-9.
https://doi.org/10.2341/16-348-L
PMid:29513637

 

7. Della-Bona A. Characterizing ceramics and the interfacial adhesion to resin: II- the relationship of surface treatment, bond strength, interfacial toughness and fractography. J Appl Oral Sci. 2005;13:101-9.
https://doi.org/10.1590/S1678-77572005000200002
PMid:20924531

 

8. El-Demanhoury HM, Haj-Ali RN, Platt JA. Fracture resistance and microleakage of endocrowns utilizing three cad-cam blocks. Oper Dent. 2015;40:201-10.
https://doi.org/10.2341/13-143-L
PMid:25268039

 

9. Otto T, Mörmann WH. Clinical performance of chairside CAD/CAM feldspathic ceramic posterior shoulder crowns and endocrowns up to 12 years. Int J Comput Dent. 2015;18:147-61.

PMid:26110927

 

10. Dal Piva A, Contreras L, Ribeiro FC, Anami LC, Camargo S, Jorge A, et al. Monolithic ceramics: effect of finishing techniques on surface properties, bacterial adhesion and cell viability. Oper Dent. 2018;43:315-25.
https://doi.org/10.2341/17-011-L
PMid:29533718

 

11. Contreras L, Dal Piva A, Ribeiro FC, Anami LC, Camargo S, Jorge A, et al. Effects of manufacturing and finishing techniques of feldspathic ceramics on surface topography, biofilm formation, and cell viability for human gingival fibroblasts. Oper Dent. 2018;43:593-601.
https://doi.org/10.2341/17-126-L
PMid:29856699

 

12. Tribst JPM, Dal Piva AMO, Penteado MM, Borges ALS, Bottino MA. Influence of ceramic material, thickness of restoration and cement layer on stress distribution of occlusal veneers. Braz Oral Res. 2018;32:e118.
https://doi.org/10.1590/1807-3107bor-2018.vol32.0118
PMid:30517427

 

13. Zimmermann M, Egli G, Zaruba M, Mehl A. Influence of material thickness on fractural strength of CAD/CAM fabricated ceramic crowns. Dent Mater J. 2017;36:778-83.
https://doi.org/10.4012/dmj.2016-296
PMid:28835598

 

14. da Cunha LF, Mondelli J, Auersvald CMGonzaga CCMondelli RFCorrer GM, et al. Endocrown with leucite-reinforced ceramic: case of restoration of endodontically treated teeth. Case Rep Dent. 2015;2015:750313.
https://doi.org/10.1155/2015/750313
PMid:26557391 PMCid:PMC4628693

 

15. Sevimli G, Cengiz S, Oruc MS. Endocrowns: review. J Istanb Univ Fac Dent. 2015;49:57-63.
https://doi.org/10.17096/jiufd.71363
PMid:28955538 PMCid:PMC5573486

 

16. Belleflamme MM, Geerts SOLouwette MMGrenade CFVanheusden AJMainjot AK. No post-no core approach to restore severely damaged posterior teeth: An up to 10-year retrospective study of documented endocrown cases. J Dent. 2017;63:1-7.
https://doi.org/10.1016/j.jdent.2017.04.009
PMid:28456557

 

17. Tribst JPM, Dal Piva AMOMadruga CFLValera MCBorges ALSBresciani E, et al. Endocrown restorations: Influence of dental remnant and restorative material on stress distribution. Dent Mater. 2018;S0109-5641:31303-9.

PMid:29935769

 

18. Dejak B, Młotkowski A. 3D-Finite element analysis of molars restored with endocrowns and posts during masticatory simulation. Dent Mater. 2013;29:e309-17.
https://doi.org/10.1016/j.dental.2013.09.014
PMid:24157244

 

19. Gulec L, Ulusoy N. Effect of endocrown restorations with different cad/cam materials: 3d finite element and weibull analyses. Biomed Res Int. 2017;2017:5638683.
https://doi.org/10.1155/2017/5638683
PMid:29119108 PMCid:PMC5651139

 

20. Sedrez-Porto JA, Rosa WLda Silva AFMünchow EAPereira-Cenci T. Endocrown restorations: A systematic review and meta-analysis. J Dent. 2016;52:8-14.
https://doi.org/10.1016/j.jdent.2016.07.005
PMid:27421989

 

21. Kanat-Ertürk B,  Saridağ SKöseler EHelvacioğlu-Yiğit DAvcu EYildiran-Avcu Y. Fracture strengths of endocrown restorations fabricated with different preparation depths and CAD/CAM materials. Dent Mater J. 2018;37:256-65.
https://doi.org/10.4012/dmj.2017-035
PMid:29311428

 

22. Einhorn M, DuVall NWajdowicz MBrewster JRoberts H. Preparation ferrule design effect on endocrown failure resistance. J Prosthodont. 2017;28:e237-e242.
https://doi.org/10.1111/jopr.12671
PMid:28985446

 

23. Fages M, Bennasar B. The endocrown: a different type of all-ceramic reconstruction for molars. J Can Dent Assoc. 2013;79:d140.

PMid:24309044

 

24. Villefort RF, Amaral MPereira GKCampos TMZhang YBottino MA, et al. Effects of two grading techniques of zirconia material on the fatigue limit of full-contour 3-unit fixed dental prostheses. Dent Mater. 2017;33:e155-64.
https://doi.org/10.1016/j.dental.2016.12.010
PMid:28118929 PMCid:PMC5359063

 

25. Dal Piva AMO, Carvalho RLALima ALBottino MAMelo RMValandro LF. Silica coating followed by heat-treatment of MDP-primer for resin bond stability to yttria-stabilized zirconia polycrystals. J Biomed Mater Res B Appl Biomater. 2018;107:104-111.
https://doi.org/10.1002/jbm.b.34100
PMid:29520999

 

26. Wang RR, Lu CL, Wang G, Zhang DS. Influence of cyclic loading on the fracture toughness and load bearing capacities of all-ceramic crowns. Int J Oral Sci. 2014;6:99-104.
https://doi.org/10.1038/ijos.2013.94
PMid:24335786 PMCid:PMC5130053

 

27. Scherrer SS, Lohbauer U, Della Bona A, Vichi A, Tholey MJ, Kelly JR, et al. ADM guidance-ceramics: guidance to the use of fractography in failure analysis of brittle materials. Dent Mater. 2017;33:599-620.
https://doi.org/10.1016/j.dental.2017.03.004
PMid:28400062

 

28. Nawafleh NA, Hatamleh MM, Öchsner A, Mack F. Fracture load and survival of anatomically representative monolithic lithium disilicate crowns with reduced tooth preparation and ceramic thickness. J Adv Prosthodont. 2017;9:416-22.
https://doi.org/10.4047/jap.2017.9.6.416
PMid:29279760 PMCid:PMC5741444

 

29. Madruga CFL, Bueno MG, Dal Piva AMO, Prochnow C, Pereira GKR, Bottino MA, et al. Sequential usage of diamond bur for CAD/CAM milling: Effect on the roughness, topography and fatigue strength of lithium disilicate glass ceramic. J Mech Behav Biomed Mater. 2019;91:326-334.
https://doi.org/10.1016/j.jmbbm.2018.12.037
PMid:30639981

 

30. Chen C, Trindade FZde Jager NKleverlaan CJFeilzer AJ. The fracture resistance of a CAD/CAM resin nano ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater. 2014;30:954-62.
https://doi.org/10.1016/j.dental.2014.05.018
PMid:25037897

 

31. Lohbauer U, Scherrer SSDella Bona ATholey Mvan Noort RVichi A, et al. ADM guidance-Ceramics: all-ceramic multilayer interfaces in dentistry. Dent Mater. 2017;33:585-98.
https://doi.org/10.1016/j.dental.2017.03.005
PMid:28431686

 

32. Aboushelib MN, Elsafi MH. Survival of resin infiltrated ceramics under influence of fatigue. Dent Mater. 2016;32:529-34.
https://doi.org/10.1016/j.dental.2015.12.001
PMid:26764178

 

33. Aktas G, Yerlikaya H, Akca k. Mechanical Failure of Endocrowns Manufactured with Different Ceramic Materials: An In Vitro Biomechanical Study. J Prosthodont. 2016;27:1-7.
https://doi.org/10.1111/jopr.12499
PMid:27465810

 

34. Kayumi S, Takayama Y, Yokoyama A, Ueda N. Effect of bite force in occlusal adjustment of dental implants on the distribution of occlusal pressure: comparison among three bite forces in occlusal adjustment. Int J Implant Dent. 2015;1:14.
https://doi.org/10.1186/s40729-015-0014-2
PMid:27747636 PMCid:PMC5005760

 

35. de Kok P, Kleverlaan CJde Jager NKuijs RFeilzer AJ. Mechanical performance of implant-supported posterior crowns. J Prosthet Dent. 2015;114:59-66.
https://doi.org/10.1016/j.prosdent.2014.10.015
PMid:25819357

 

36. Höland W, Rheinberger VApel Evan 't Hoen CHöland MDommann A, et al. Clinical applications of glass-ceramics in dentistry. J Mater Sci Mater Med. 2006;17:1037-42.
https://doi.org/10.1007/s10856-006-0441-y
PMid:17122916

 

37. Della Bona A, Mecholsky JJ Jr, Anusavice KJ. Fracture behavior of lithia disilicate- and leucite-based ceramics. Dent Mater. 2004;20:956-62.
https://doi.org/10.1016/j.dental.2004.02.004
PMid:15501324

 

38. Yavuz T, Eraslan O. The effect of silane applied to glass ceramics on surface structure and bonding strength at different temperatures. J Adv Prosthodont. 2016;8:75-84.
https://doi.org/10.4047/jap.2016.8.2.75
PMid:27141250 PMCid:PMC4852270

 

39. Sattabanasuk V, Charnchairerk PPunsukumtana LBurrow MF. Effects of mechanical and chemical surface treatments on the resin-glass ceramic adhesion properties. J Investig Clin Dent. 2017;8.
https://doi.org/10.1111/jicd.12220
PMid:27282642

 

40. Yazigi C, Kern M, Chaar MS. Influence of various bonding techniques on the fracture strength of thin CAD/CAM-fabricated occlusal glass-ceramic veneers. J Mech Behav Biomed Mater. 2017;75:504-11.
https://doi.org/10.1016/j.jmbbm.2017.08.016
PMid:28843882

 

41. Atash R, Arab M, Duterme H, Cetik S. Comparison of resistance to fracture between three types of permanent restorations subjected to shear force: An in vitro study. J Indian Prosthodont Soc. 2017;17:239-49.
https://doi.org/10.4103/jips.jips_24_17
PMid:28936037 PMCid:PMC5601495

 

42. Forberger N, Göhring TN. Influence of the type of post and core on in vitro marginal continuity, fracture resistance, and fracture mode of lithia disilicate-based all-ceramic crowns. J Prosthet Dent. 2008;100:264-73.
https://doi.org/10.1016/S0022-3913(08)60205-X

PMid:18922255

 

43. Abdel-Aziz M, Abo-Elmagd AAA. Effect of endocrowns and glass fiber post-retained crowns on the fracture resistance of endodontically treated premolars. Egypt Dent J. 2015;61:3203-10.

 

44. Bankoğlu Güngör M, Turhan Bal BYilmaz HAydin CKarakoca Nemli S. Fracture strength of CAD/CAM fabricated lithium disilicate and resin nano ceramic restorations used for endodontically treated teeth. Dent Mater J. 2017;36:135-41.
https://doi.org/10.4012/dmj.2016-017
PMid:28111383

 

45. Ergun G, Cekic I, Lassila LV, Vallittu PK. Bonding of lithium-disilicate ceramic to enamel and dentin using orthotropic fiber-reinforced composite at the interface. Acta Odontol Scand. 2006;64:293-9.
https://doi.org/10.1080/00016350600758750
PMid:16945895

 

46. Fonseca GF, de Andrade GSDal Piva AMOTribst JPMBorges ALS. Computer-aided design finite element modeling of different approaches to rehabilitate endodontically treated teeth. J Indian Prosthodont Soc. 2018;18:329-35.
https://doi.org/10.4103/jips.jips_168_18
PMid:30449961 PMCid:PMC6180740

 

47. Reich S, Schierz O. Chair-side generated posterior lithium disilicate crowns after 4 years. Clin Oral Investig. 2013;17:1765-72.
https://doi.org/10.1007/s00784-012-0868-0
PMid:23135425

 

48. Gehrt M, Wolfart SRafai NReich SEdelhoff D. Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin Oral Investig. 2013;17:275-84.
https://doi.org/10.1007/s00784-012-0700-x
PMid:22392163

 

49. Schultheis S, Strub JR, Gerds TA, Guess PC. Monolithic and bi-layer CAD/CAM lithium-disilicate versus metal-ceramic fixed dental prostheses: comparison of fracture loads and failure modes after fatigue. Clin Oral Investig. 2013;17:1407-13.
https://doi.org/10.1007/s00784-012-0830-1
PMid:23001151

 

50. Melo RM, Pereira C, Ramos NC, Feitosa FA, Dal Piva AMO, Tribst JPM, et al. Effect of pH variation on the subcritical crack growth parameters of glassy matrix ceramics. Int J Appl Ceram Technol. 2019;00:1- 8.
https://doi.org/10.1111/ijac.13302

 

51. Takaki P, Vieira M, Bommarito S. Maximum bite force analysis in different age groups. Int Arch Otorhinolaryngol. 2014;18:272-6.
https://doi.org/10.1055/s-0034-1374647
PMid:25992105 PMCid:PMC4297017

 

52. Dal Piva AO, Tribst JP, Borges AL, de Melo RM, Bottino MA. Influence of substrate design for in vitro mechanical testing. J Clin Exp Dent. 2019;11:e119-e125
https://doi.org/10.4317/jced.55353
PMid:30805115 PMCid:PMC6383903

 

53. Hayes A, Duvall N, Wajdowicz M, et al. Effect of endocrown pulp chamber extension depth on molar fracture resistance. Oper Dent. 2017;42:327-34.
https://doi.org/10.2341/16-097-L
PMid:28467258