Garcia VG, Gomes Calil VSDG, Cardoso JM, Hinz M, da Rocha TE, Ervolino E, Miessi DMJ, Toro LF, Brandini DA, Theodoro LH. In vivo comparative study of the effects of using the enamel matrix derivative and/or photobiomodulation on the repair of bone defects. J Clin Exp Dent. 2022;14(2):e114-22.

 

doi:10.4317/jced.59179

https://doi.org/10.4317/jced.59179

___________

 

References

1. Santos Kotake BG, Gonzaga MG, Coutinho-Netto J, Ervolino E Figueiredo FAT, Issa JPM. Bone repair of critical-sized defects in Wistar rats treated with autogenic, allogenic or xenogenic bone grafts alone or in combination with natural latex fraction F1. Biomed Mater. 2018;13:025022.
https://doi.org/10.1088/1748-605X/aa9504
PMid:29053112

 

2. de Freitas Silva L, de Carvalho Reis ENR, Barbara TA, Bonardi JP, Garcia IR Junior, de Carvalho PSP, et al. Assessment of bone repair in critical-size defect in the calvarium of rats after the implantation of tricalcium phosphate beta (β-TCP). Acta Histochem. 2019;119:624-31.
https://doi.org/10.1016/j.acthis.2017.07.003
PMid:28732677

 

3. Suárez-López Del Amo F, Monje A, Padial-Molina M, Tang Z, Wang HL. Biologic Agents for Periodontal Regeneration and Implant Site Development. Biomed Res Int. 2015;2015:957518.
https://doi.org/10.1155/2015/957518
PMid:26509173 PMCid:PMC4609805

 

4. Rosso, MPO, Buchaim, DV, Pomini, KT, Coletta, BBD, Reis, CHB, Pilon, JPG, et al. Photobiomodulation Therapy (PBMT) Applied in Bone Reconstructive Surgery Using Bovine Bone Grafts: A Systematic Review. Materials (Basel). 2019;12:4051.
https://doi.org/10.3390/ma12244051
PMid:31817369 PMCid:PMC6947623

 

5. Dereci Ö, Sindel A, Serap Toru H, Yüce E, Ay S, Tozoğlu S. The Comparison of the Efficacy of Blue Light-Emitting Diode Light and 980-nm Low-Level Laser Light on Bone Regeneration. J Craniofac Surg. 2016;27:2185-89.
https://doi.org/10.1097/SCS.0000000000003068
PMid:28005786

 

6. Lyngstadaas SP, Wohlfahrt JC, Brookes SJ, Paine ML, Snead ML, Reseland JE. Enamel matrix proteins; old molecules for new applications. Orthod Craniofac Res. 2009;12:243-53.
https://doi.org/10.1111/j.1601-6343.2009.01459.x
PMid:19627527 PMCid:PMC2825346

 

7. Miron RJ, Bosshardt DD, Laugisch O, Dard M, Gemperli AC, Buser D, et al. In vitro evaluation of demineralized freeze-dried bone allograft in combination with enamel matrix derivative. J Periodontol. 2013;84:1646-54.
https://doi.org/10.1902/jop.2013.120574
PMid:23347347

 

8. Hammarström L, Heijl L, Gestrelius S. Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix proteins. J Clin Periodontol. 1997;24:669-77.
https://doi.org/10.1111/j.1600-051X.1997.tb00248.x
PMid:9310871

 

9. Döri F, Nikolidakis D, Huszar T, Arweiler NB, Gera I, Sculean A. Effect of platelet rich plasma on the healing of intrabony defects treated with an enamel matrix protein derivative and a natural bone mineral. J Clin Periodontol. 2008;35:44-50.
https://doi.org/10.1111/j.1600-051X.2007.01161.x
PMid:18034853

 

10. Esposito M, Grusovin MG, Papanikolaou N, Coulthard P, Worthington HV. Enamel matrix derivative (Emdogain(R)) for periodontal tissue regeneration in intrabony defects. Cochrane Database Syst Rev. 2009;2009:CD003875.
https://doi.org/10.1002/14651858.CD003875.pub3
PMid:19821315 PMCid:PMC6786880

 

11. Hama H, Azuma H, Seto H, Kido J, Nagata T. Inhibitory effect of enamel matrix derivative on osteoblastic differentiation of rat calvaria cells in culture. J Periodontal Res. 2008;43:179-85.
https://doi.org/10.1111/j.1600-0765.2007.01010.x
PMid:18302620

 

12. Fujimoto K, Kiyosaki T, Mitsui N, Mayahara K, Omasa S, SuzukI N, et al. Low-intensity laser irradiation stimulates mineralization via increased BMPs in MC3T3-E1 cells. Lasers Surg Med. 2010;42:519-26.
https://doi.org/10.1002/lsm.20880
PMid:20662028

 

13. de Oliveira GJPL, Aroni MAT, Medeiros MC, Marcantonio Jr, E, Marcantonio RAC. Effect of low-level laser therapy on the healing of sites grafted with coagulum, deproteinized bovine bone, and biphasic ceramic made of hydroxyapatite and β-tricalcium phosphate. In vivo study in rats. Lasers Surg Med. 2018. doi: 10.1002/lsm.22787.
https://doi.org/10.1002/lsm.22787
PMid:29331041

 

14. Ozcelik O, Cenk Haytac M, Seydaoglu G. Enamel matrix derivative and low-level laser therapy in the treatment of intra-bony defects: a randomized placebo-controlled clinical trial. J Clin Periodontol. 2008;35:147-56.
https://doi.org/10.1111/j.1600-051X.2007.01176.x
PMid:18081859

 

15, Smith AJ. Guidelines for planning and conducting high-quality research and testing on animals. Lab Anim Res. 2020;36:21.
https://doi.org/10.1186/s42826-020-00054-0
PMid:32665911 PMCid:PMC7348107

 

16, Oz HS, Puleo DA. Animal models for periodontal disease. J Biomed Biotech. 2011;2011:754857.
https://doi.org/10.1155/2011/754857
PMid:21331345 PMCid:PMC3038839

 

17. Raafat SN, Amin RM, Elmazar MM, Khattab MM, El-Khatib AS. The Sole and Combined Effect of Simvastatin and Platelet Rich Fibrin as a Filling Material in Induced Bone Defect in Tibia of Albino Rats. Bone. 2018;117:60-69.
https://doi.org/10.1016/j.bone.2018.09.003
PMid:30208342

 

18.Gruber R, Roos G, Caballé-Serrano J, Miron R, Bosshardt DD, Sculean A. TGF-βRI kinase activity mediates Emdogain-stimulated in vitro osteoclastogenesis. Clin Oral Investig. 2014;18:1639-46.
https://doi.org/10.1007/s00784-013-1129-6
PMid:24221580

 

19. Schwartz Z, Carnes Jr DL, Pulliam R, Lohamann CH, Sylvia VL, Liu Y, et al. Porcine fetal enamel matrix derivative stimulates proliferation but not differentiation of pre-osteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells. J Periodontol. 2000;71:1287-96.
https://doi.org/10.1902/jop.2000.71.8.1287
PMid:10972644

 

20. Wu SM, Chiu HC, Chin YT, Lin HY, Chiang CY, Tu HP, et al. Effects of enamel matrix derivative on the proliferation and osteogenic differentiation of human gingival mesenchymal stem cells. Stem Cell Res Ther. 2014;5:52.
https://doi.org/10.1186/scrt441
PMid:24739572 PMCid:PMC4076631

 

21. Amaroli A, Agas D, Laus F, Cuteri V, Hanna R, Sabbieti MG, et al. The Effects of Photobiomodulation of 808 nm Diode Laser Therapy at Higher Fluence on the in Vitro Osteogenic Differentiation of Bone Marrow Stromal Cells. Front Physiol. 2018;9:123.
https://doi.org/10.3389/fphys.2018.00123
PMid:29527174 PMCid:PMC5829029

 

22. Giannelli M, Chellini D, Sassoli C, Francini F, Pini A, Squecco R, et al. Photoactivation of bone marrow mesenchymal stromal cells with diode laser: effects and mechanisms of action. J Cell Physiol. 2013;228:172-81.
https://doi.org/10.1002/jcp.24119
PMid:22628164

 

23. Santinoni CS, Neves APC, Almeida BFM, Kajimoto NC, Pola NM, Caliente EA, et al. Bone marrow coagulated and low-level laser therapy accelerate bone healing by enhancing angiogenesis, cell proliferation, osteoblast differentiation, and mineralization. J Biomed Mater. Res. A. 2021;109:849-58.
https://doi.org/10.1002/jbm.a.37076
PMid:32815657

 

24. Pretel H. Lizarelli RF, Ramalho LT. Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med. 2007;39:788-96.
https://doi.org/10.1002/lsm.20585
PMid:18081142

 

25. Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M, Babilas P. Oxygen in acute and chronic wound healing. Br J Dermatol. 2010;163:257-68.
https://doi.org/10.1111/j.1365-2133.2010.09804.x
PMid:20394633

 

26. Gurtner QC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature. 2008;453:314-21.
https://doi.org/10.1038/nature07039
PMid:18480812

 

27. Huang YY, Chen AC, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy. Dose Response. 2009;7:358-83.
https://doi.org/10.2203/dose-response.09-027.Hamblin
PMid:20011653 PMCid:PMC2790317

 

28. Huang YY, Sharma SK, Carroll JD, Hamblin MR. Biphasic dose response in low level light therapy - an update. Dose-response. 2011;9:602-18.
https://doi.org/10.2203/dose-response.11-009.Hamblin
PMid:22461763 PMCid:PMC3315174

 

29. Karu T, Pyatibrat L, Kalendo G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B. 1995;27:219-23.
https://doi.org/10.1016/1011-1344(94)07078-3

 

30. Oliveira FA, Matos AA, Matsuda SS, Buzalaf MA, Bagnato VS, Machado MA. et al. Low level laser therapy modulates viability, alkaline phosphatase and matrix metalloproteinase-2 activities of osteoblasts. J Photochem Photobiol B. 2017;169:35-40.
https://doi.org/10.1016/j.jphotobiol.2017.02.020
PMid:28264787