Barbosa LM,
Silva JAA, da Silva JIS, Ren TI, Vasconcelos BCE, Filho JRL. Artificial Neural Network-Assisted
Facial Analysis for Planning of Orthognathic Surgery. J Clin Exp Dent. 2024;16(11):e1386-92.
doi:10.4317/jced.62088
https://doi.org/10.4317/jced.62088
_____
References
|
1.
Patcas R, Bernini DAJ, Volokitin A, Agustsson E, Rothe R, Timofte R. Applying artificial intelligence
to assess the impact of orthognathic treatment on facial attractiveness and estimated age. Int J Oral e Maxillofac Surg 2019: 48:
77-83. |
|
|
|
|
|
2.
Arnett GW, Bergman RT. Facial keys
to orthodontic planning. Part I. Am J Orthod Dentofacial Orthop 1993: 103:
395-411. |
|
|
|
|
|
3.
Bouletreau P, Makaremi M,
Ibrahim B, Louvrier A, Sigaux
N, Artificial Intelligence: Applications
in Orthognathic Surgery.
J of Stomatol Oral Maxillofac
Surg 2019: 4: 347-54. |
|
|
|
|
|
4.
Kaplan A, Haenlein M. Siri,
Siri, in my hand: who's the fairest
in the land? On the interpretations,
illustrations, and implications
of artificial intelligence. Bus Horiz
2019: 62:15-25. |
|
|
|
|
|
5.
Erickson BJ, Korfiatis P, Akkus
Z, Kline TL. Machine learning
for medical imaging. Radiographics 2017: 37: 505-15. |
|
|
|
|
|
6.
Arik SO, Ibragimov B, Xing L. Fully automated quantitative cephalometry using convolutional neural networks.
J Med Imaging 2017: 4:
53-6. |
|
|
|
|
|
7.
Miki Y, Muramatsu C, Hayashi T, Zhou X, Hara T, Katsumata A. Classification of teeth in cone-beam CT using deep convolutional neural network. Comput Biol Med 2017: 1: 24-9. |
|
|
|
|
|
8.
Koestinger M, Wohlhart P,
Roth PM, Bischof H. Annotated facial landmarks in the wild: A largescale, real-world database for facial landmark localization. ICCV Workshop; Barcelona, Espanha. IEEE 2011: 2144-51. |
|
|
|
|
|
9.
Sagonas C, Tzimiropoulos
G, Zafeirious S, Pantic
M.300 faces in-the-wild challenge:
The first facial landmark localization challenge. ICCV Workshop; Sydney,
NSW, Australia. IEEE 2013: 397-403. |
|
|
|
|
|
10.
Shen J, Zafeiriou S, Chrysos GG, Kossaifi J, Tzimiropoulos G, Pantic M. The first facial landmark tracking in-the-wild challenge: Benchmark and results. ICCV Workshop; Santiago, Chile. IEEE 2015:
1003-11. |
|
|
|
|
|
11.
Liu Y, Wei F, Shao J, Sheng L, Yan J, Wang X. Exploring disentangled feature representation beyond face identification. CVPR;
2018; Salt Lake City, UT, USA. IEEE/CVF 2018: 2080-9. |
|
|
|
|
|
12.
Dong X, Yang Y. Teacher Supervises Students How to Learn From Partially
Labeled Images for Facial Landmark Detection. International Conference
on Computer Vision; Seoul, South Korea. IEEE/CVF 2019: 783-92. |
|
|
|
|
|
13.
Wu Y, Hassner T, Kim K, Medioni G, Natarajan P. Facial landmark detection with tweaked convolutional neural networks.
IEEE Trans Pattern Anal
Mach Intel 2018: 40: 3067-74. |
|
|
|
|
|
14.
Guo J, Zhu X, Yang Y,
Yang F, Lei Z, Li SZ. Towards
Fast, Accurate and Stable 3D Dense Face Alignment. ECCV; Lecture Notes
in Computer Science 2020:
13: 152-68. |
|
|
|
|
|
15.
Serengil SI, Ozpinar A. HyperExtended LightFace: A
Facial Attribute Analysis
Framework. International Conference on Engineering and Emerging Technologies (ICEET); Istanbul,
Turkey. IEEE 2021: 1-4. |
|
|
|
|
|
16.
Zhang K, Zhang Z, Li Z, Qiao Y. Joint
face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters 2016: 23:
1499-599. |
|
|
|
|
|
17.
Deng J, Guo J, Xue N, Zafeiriou S. Arcface: Additive angular margin loss for
deep face recognition." Conference on Computer Vision
and Pattern Recognition
(CVPR); Long Beach, CA, USA. IEEE/CVF 2019: 4685-94. |
|
|
|
|
|
18.
Ren S, Cao X, Wei Y, Sun J. Face Alignment
at 3000 FPS via Regressing
Local Binary Features.
IEEE Conference on Computer Vision and Pattern Recognition; Columbus,
OH, USA. IEEE 2014: 1685-92. |
|
|
|
|
|
19.
Kingma, Diederik P., and
Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980
2014. |
|
|
|
|
|
20.
Altman, DG. Practical statistics for medical research. CRC press, 1990. |
|
|
|
|
|
21.
Fourcade A, Khonsari RH.
Deep learning in medical image
analysis: a third eye for doctors.
Journal of Stomatology,
Oral and Maxillofacial Surgery
2019: 145: 279-288. |
|
|
|
|
|
22.
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature 2015: 14: 27-38. |
|
|
|
|
|
23.
Data Science Academy.
Deep Learning Book, 2019. DisponÃvel
em: <http://www.deeplearningbook.com.br/>. Acesso em: 05 dezembro. 2020. |
|
|
|
|
|
24.
Ming Yan, Jixiang Guo, Weidong Tian, Zhang Yi, Symmetric convolutional neural network for mandible
segmentation, Knowledge-Based
Systems 2018: 63-71. |
|