de Brito DHS,
dos Santos TGFT, Costa SGA, dos Santos AS, da Silva ILB, da Silva NRC,
Fernandes BJT, Niederman R, Mota CCBO, da Silveira MMF, Heimer MV, Rosenblatt
A. Accuracy in diagnosing caries in young permanent molars using interproximal
radiographic imaging and validation by artificial intelligence. J Clin Exp Dent. 2025;17(6):e648-55.
doi:10.4317/jced.62396
https://doi.org/10.4317/jced.62396
___
References
|
1.
Pitts NB, Baez RJ, Diaz-Guillory C, Donly KJ, Feldens CA, Twetman S, et al.
Early childhood caries: IAPD Bangkok declaration. Journal of dentistry for
children (Chicago, Ill.) 2019;86(2):72. PMid:31395110 |
|
|
|
|
|
2.
Keenan JR, Keenan AV. Accuracy of dental radiographs for caries detection.
Evidence-based dentistry. 2016;17(2):43-43. |
|
|
|
|
|
3.
Braga MM, Mendes FM, Ekstrand KR. Detection activity assessment and diagnosis
of dental caries lesions. Dent Clin North Am. 2010;54(3):479-93. |
|
|
|
|
|
4.
Novaes TF, Matos R, Raggio DP, Braga MM, Mendes FM. Children's discomfort in
assessments using different methods for approximal caries detection. Braz
Oral Res. 2012;26(2):93-9. |
|
|
|
|
|
5.
Getova B, Pavlevska M, Carceva-Salja S. Prevalence of first permanent molar
caries among children at age 12 in Republic of Macedonia. Research Journal of
Pharmaceutical, Biological and Chemical Sciences. 2018;ISSN: 0975-8585. |
|
|
|
|
|
6.
Temur KT, Önsüren AS. Investigating permanent first molars of a Turkish
pediatric sample in the eastern Mediterranean region: A radiographic study.
Journal of Experimental and Clinical Medicine. 2022;39(3):611-15. |
|
|
|
|
|
7.
Botelho K, Carvalho L, Maciel R, Franca CD, Colares V. Clinical condition of
the first permanent molars: of children aged 6 to 8 years. Clinical-Scientific
Dentistry. 2011;10(2):167-171. |
|
|
|
|
|
8.
Gondim RS, Abreu LG. Study of the accuracy of fluorescence induction devices
and the radiographic method for the diagnosis of caries lesions in primary
teeth: a systematic review and meta-analysis. Archives in Dentistr 2022;58:63-86. |
|
|
|
|
|
9.
Soares GG, Souza PR, de Carvalho Purger FP, de Vasconcellos AB, Ribeiro AA.
Caries detection methods. Brazilian Journal of Dentistry. 2012;69(1): 84. |
|
|
|
|
|
10.
Purger F, Oliveira P, Vasconcellos A. Relative importance of radiographs in
diagnosing primary molars proximal caries. Journal Dental Research. 2011;90. |
|
|
|
|
|
11.
World Health Organization. Oral health surveys: basic methods. World Health
Organization. 2013. |
|
|
|
|
|
12.
Martins AMEBL, Haikal DSA, Santos Neto PE, et al. Calibration of examiners
epidemiological survey of oral health status of populations in Montes Claros,
MG. Unimontes Cient. 2012;14(1):43-56. |
|
|
|
|
|
13.
Rodrigues ACC, Quispe RA, Capelozza ALA, Rubira CMF, Buaes AMG, da Silva
Santos PS. The importance of calibration for radiographic evaluation of
dental anomalies in cancer patients. IC Cesumar. 2017;19(2):171-77. |
|
|
|
|
|
14.
Slimani A, Terrer E, Manton DJ, Tassery H. Carious lesion detection
technologies: Factual clinical approaches. British Dental Journal.
2020;229(7):432-442. |
|
|
|
|
|
15.
Kaur J, Singh W. Tools, techniques, datasets and application areas for object
detection in an image: a review. Multimedia Tools and Applications. Springer.
2022;81(27):38297-38351. |
|
|
|
|
|
16.
Wiley V, Lucas T. Computer vision and image processing: a paper review. International
Journal of Artificial Intelligence Research. 2018;2(1):29-36. |
|
|
|
|
|
17.
Kishimoto T, Goto T, Matsuda T, Iwawaki Y, Ichikawa T. Application of
artificial intelligence in the dental field: A literature review. Journal of
Prosthodontic Research. 2022;66(1):19-28. |
|
|
|
|
|
18.
Suhail Y, Upadhyay M, Chhibber A, Kshitiz. Machine learning for the diagnosis
of orthodontic extractions: a computational analysis using ensemble learning.
Bioengineering. 2020;7(2):55. |
|
|
|
|
|
19.
Schwendicke F, Golla T, Dreher M, Krois J. Convolutional neural networks for
dental image diagnostics: A scoping review. Journal of dentistry. 2019;91:103226. |
|
|
|
|
|
20.
Rao RS, Shivanna DB, Lakshminarayana S, Mahadevpur KS, Alhazmi YA, Testarelli
L, et al. Ensemble deep-learning-based prognostic and prediction for
recurrence of sporadic odontogenic keratocysts on hematoxylin and eosin
stained pathological images of incisional biopsies. Journal of Personalized
Medicine 2022;12(8):1220. |
|
|
|
|
|
21.
Chen YC, Chen MY, Chen TY, Chan ML, Huang YY, Abu PAR, et al. Improving
dental implant outcomes: CNN-based system accurately measures degree of
peri-implantitis damage on periapical film. Bioengineering. 2023;10(6):640. |
|
|
|
|
|
22.
Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016;779-788. |
|
|
|
|
|
23.
ULTRALYTICS. yolov8. [S.l.]: GitHub, 2023. Available at:
https://github.com/ultralytics/ultralytics. Accessed on: 20 de janeiro de
2024. |
|
|
|
|
|
24.
De Ullibarri Galparsoro L, Pita Fernández S. Agreement measures: the Kappa
index. Primary Care Journal. 1999;6:169-171. |
|
|
|
|
|
25.
Assaf AV, Zanin L, Meneghim MDC, Pereira AC, Ambrosano GMB. Comparison
between reproducibility measures for calibration in epidemiological surveys
of dental caries. Public Health Journal. 2006;22:1901-1907. PMid:16917587 |
|
|
|
|
|
26.
Dias da Silva PR, Martins Marques M, Steagall Jr W, Medeiros Mendes F,
Lascala CA. Accuracy of direct digital radiography for detecting occlusal
caries in primary teeth compared with conventional radiography and visual
inspection: an in vitro study. Dentomaxillofacial Radiology.
2010;39(6):362-67. |
|
|
|
|
|
27.
Signori C, Laske M, Mendes FM, Huysmans MCD, Cenci MS, Opdam NJ. Decision-making
of general practitioners on interventions at restorations based on bitewing
radiographs. Journal of Dentistry. 2018;76:109-16. |
|
|
|
|
|
28.
Caceda JH, Jiang S, Calderon V, Villavicencio-Caparo E. Sensitivity and
specificity of the ICDAS II system and bitewing radiographs for detecting
occlusal caries using the Spectra™ caries detection system as the reference
test in children. BMC Oral Health. 2023;23(1):896. |
|
|
|
|
|
29.
Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries
using a deep learning-based convolutional neural network algorithm. Journal
of dentistry. 2018;77:106-111. |
|
|
|
|
|
30.
Ragab MG, Abdulkader SJ, Muneer A, Alqushaibi A, Sumiea EH, Alhussian H, et
al. A Comprehensive Systematic Review of YOLO for Medical Object Detection
(2018 to 2023). IEEE Access. 2024. |
|