Nabat MA, Kadhim AJ. Influences of different fiber-reinforced biobases on the fracture strength and failure mode of lithium disilicate overlay restorations (a comparative in vitro study). J Clin Exp Dent. 2025;17(8):e884-90.

 

doi:10.4317/jced.62746

https://doi.org/10.4317/jced.62746

___

 

References

1. Garoushi S, Sungur S, Boz Y, Ozkan P, Vallittu P, Uctasli S, et al. Influence of short-fiber composite base on fracture behavior of direct and indirect restorations. Clinical Oral Investigations. 2021;25(7):4543-4552.
https://doi.org/10.1007/s00784-020-03768-6
PMid:33417063 PMCid:PMC8310497

 

2. García-Cuesta C, Faus-Llácer V, Zubizarreta-Macho Á, Botello-Torres R, Faus-Matoses V. A comparison of the marginal adaptation of composite overlays fabricated with silicone and an intraoral scanner. J Clin Exp Dent. 2021;13(5):e473-e8.
https://doi.org/10.4317/jced.58140
PMid:33981394 PMCid:PMC8106928

 

3. Ghadeer FK, Alwan LE, Al-Azzawi AKJ. Crystallization firing effect on the marginal discrepancy of the IPS. emax CAD crowns using two different CAD/CAM systems. Journal of Baghdad College of Dentistry. 2023;35(1):49-57.
https://doi.org/10.26477/jbcd.v35i1.3316

 

4. Saadallah S, Al-Azzawi AKJ. The influence of different fabrication and impression techniques on the marginal adaptation of lithium disilicate crowns (A comparative in vitro study). Journal of Baghdad College of Dentistry. 2017;29(4):20-6.
https://doi.org/10.12816/0042987

 

5. Magne P. Immediate dentin sealing: a fundamental procedure for indirect bonded restorations. Journal of Esthetic and Restorative Dentistry. 2005;17(3):144-54.
https://doi.org/10.1111/j.1708-8240.2005.tb00103.x
PMid:15996383

 

6. de Andrade OS, de Goes MF, Montes MA. Marginal adaptation and microtensile bond strength of composite indirect restorations bonded to dentin treated with adhesive and low-viscosity composite. Dent Mater. 2007;23(3):279-87.
https://doi.org/10.1016/j.dental.2006.01.028
PMid:16546249

 

7. Hezavehi M, Neshandar Asli H, Babaee Hemmati Y, Falahchai M. Fracture strength and marginal and internal adaptation of lithium disilicate and hybrid ceramic endocrowns and non-retentive overlays for endodontically treated molar teeth. BMC Oral Health. 2024;24(1):1524.
https://doi.org/10.1186/s12903-024-05327-x
PMid:39707291 PMCid:PMC11662440

 

8. Lassila L, Keulemans F, Säilynoja E, Vallittu PK, Garoushi S. Mechanical properties and fracture behavior of flowable fiber reinforced composite restorations. Dental Materials. 2018;34(4):598-606.
https://doi.org/10.1016/j.dental.2018.01.002
PMid:29366493

 

9. Kruzic JJ, Arsecularatne JA, Tanaka CB, Hoffman MJ, Cesar PF. Recent advances in understanding the fatigue and wear behavior of dental composites and ceramics. J Mech Behav Biomed Mater. 2018;88:504-33.
https://doi.org/10.1016/j.jmbbm.2018.08.008
PMid:30223214

 

10. Forster A, Braunitzer G, Tóth M, Szabó BP, Fráter M. In vitro fracture resistance of adhesively restored molar teeth with different MOD cavity dimensions. Journal of Prosthodontics. 2019;28(1):e325-e31.
https://doi.org/10.1111/jopr.12777
PMid:29508474

 

11. Sáry T, Garoushi S, Braunitzer G, Alleman D, Volom A, Fráter M. Fracture behaviour of MOD restorations reinforced by various fibre-reinforced techniques-An in vitro study. J Mech Behav Biomed Mater. 2019;98:348-56.
https://doi.org/10.1016/j.jmbbm.2019.07.006
PMid:31302584

 

12. Belli S, Orucoglu H, Yildirim C, Eskitascioglu G. The effect of fiber placement or flowable resin lining on microleakage in Class II adhesive restorations. J Adhes Dent. 2007;9(2):175-81.

PMid:17489478

 

13. Abdulamir SW, Majeed MA. Fracture resistance of endodontically treated maxillary premolar teeth restored with wallpapering technique: a comparative in vitro study. Int J Dent. 2023;2023(1):6159338.
https://doi.org/10.1155/2023/6159338
PMid:37143851 PMCid:PMC10154104

 

14. Tsertsidou V, Mourouzis P, Dionysopoulos D, Pandoleon P, Tolidis K. Fracture Resistance of Class II MOD Cavities Restored by Direct and Indirect Techniques and Different Materials Combination. Polymers. 2023;15(16):3413.
https://doi.org/10.3390/polym15163413
PMid:37631470 PMCid:PMC10458958

 

15. Mansi ZM, Al-Shamma AM, Saleh AR. Assessment of marginal adaptation of indirect zirconia crown restorations using self-adhesive resin cements modified with polylysine antibacterial particles. Journal of Baghdad College of Dentistry. 2024;36(4):50-60.
https://doi.org/10.26477/jbcd.v36i4.3824

 

16. Abdulazeez MI, Majeed MA. Fracture strength of monolithic zirconia crowns with modified vertical preparation: a comparative in vitro study. Eur J Dent. 2022;16(01):209-14.
https://doi.org/10.1055/s-0041-1735427
PMid:34847612 PMCid:PMC8890931

 

17. Zarone F, Di Mauro MI, Ausiello P, Ruggiero G, Sorrentino R. Current status on lithium disilicate and zirconia: a narrative review. BMC Oral Health. 2019;19(1):134.
https://doi.org/10.1186/s12903-019-0838-x
PMid:31272441 PMCid:PMC6610968

 

18. Sagsoz NP, Yanıkoglu N. Evaluation of the fracture resistance of computer‑aided design/computer‑aided manufacturing monolithic crowns prepared indifferent cement thicknesses. Niger J Clin Pract. 2018;21(4).
https://doi.org/10.4103/njcp.njcp_137_17
PMid:29607851

 

19. Ferraris F, Sammarco E, Romano G, Cincera S, Giulio M. Comparison of posterior indirect adhesive restorations (PIAR) with different preparation designs according to the adhesthetics classification. Part 1: Effects on the fracture resistance. Int J Esthet Dent. 2021;16(2):144-167.

PMid:33969972

 

20. Abdulsattar YH, Kadhim AJ. Effect of immediate dentin sealing on the fracture strength of indirect overlay restorations using different types of luting agents (A comparative in vitro study). J Conserv Dent Endod. 2023;26(4):434-40.
https://doi.org/10.4322/bds.2023.e3925

PMid:37705547 PMCid:PMC10497084

21. Garoushi S, Akbaşak-Sungur A, Erkut S, Vallittu P, Uctasli S, Lassila L. Evaluation of fracture behavior in short fiber-reinforced direct and indirect overlay restorations. Clin Oral Investig. 2023;27(9):5449-58.
https://doi.org/10.1007/s00784-023-05164-2
PMid:37477724 PMCid:PMC10492695

 

22. Oskoee PA, Chaharom M, Kimyai S, Oskoee JS, Varasteh S. Effect of two types of composite fibers on fracture resistance of endodontically treated maxillary premolars: an in vitro study. J Contemp Dent Pract. 2011;12(1):30-4.
https://doi.org/10.5005/jp-journals-10024-1006
PMid:22186687

 

23. Garlapati TG, Krithikadatta J, Natanasabapathy V. Fracture resistance of endodontically treated teeth restored with short fiber composite used as a core material-An in vitro study. J Prosthodont Res. 2017;61(4):464-70.
https://doi.org/10.1016/j.jpor.2017.02.001
PMid:28279651

 

24. Fildisi MA, Eliguzeloglu Dalkilic E. The effect of fiber insertion on fracture strength and fracture modes in endocrown and overlay restorations. Microsc Res Tech. 2022;85(5):1799-807.
https://doi.org/10.1002/jemt.24040
PMid:34964540

 

25. Lassila L, Säilynoja E, Prinssi R, Vallittu PK, Garoushi S. Fracture behavior of Bi-structure fiber-reinforced composite restorations. J Mech Behav Biomed Mater. 2020;101:103444.
https://doi.org/10.1016/j.jmbbm.2019.103444
PMid:31561057

 

26. Magne P, Milani T. Short-fiber reinforced MOD restorations of molars with severely undermined cusps. J Adhes Dent. 2023;25(1):99-106.

 

27. Otero CAY, Bijelic-Donova J, Saratti CM, Vallittu PK, di Bella E, Krejci I, et al. The influence of FRC base and bonded CAD/CAM resin composite endocrowns on fatigue behavior of cracked endodontically-treated molars. J Mech Behav Biomed Mater. 2021;121:104647.
https://doi.org/10.1016/j.jmbbm.2021.104647
PMid:34171717

 

28. Rocca G, Saratti C, Cattani-Lorente M, Feilzer A, Scherrer S, Krejci I. The effect of a fiber reinforced cavity configuration on load bearing capacity and failure mode of endodontically treated molars restored with CAD/CAM resin composite overlay restorations. J Dent. 2015;43(9):1106-15.
https://doi.org/10.1016/j.jdent.2015.06.012
PMid:26149065

 

29. Zhao K, Wei YR, Pan Y, Zhang XP, Swain MV, Guess PC. Influence of veneer and cyclic loading on failure behavior of lithium disilicate glass-ceramic molar crowns. Dent Mater. 2014;30(2):164-71.
https://doi.org/10.1016/j.dental.2013.11.001
PMid:24331550

 

30. Yang R, Arola D, Han Z, Zhang X. A comparison of the fracture resistance of three machinable ceramics after thermal and mechanical fatigue. J Prosthet Dent. 2014;112(4):878-85.
https://doi.org/10.1016/j.prosdent.2014.03.005
PMid:24819527