Yadalam PK, Arumugam P, Melanathuru Balanatha SK, Ardila CM. Strontium-Zinc conversion coating on magnesium plates for resorbable tack screws in guided bone regeneration: Characterization and biocompatibility evaluation. J Clin Exp Dent. 2025;17(8):e936-42.

 

doi:10.4317/jced.62819

https://doi.org/10.4317/jced.62819

___

 

References

1. Matvijenko K, Borusevičius R. Comparison of dynamic navigation systems in dental implantology: a systematic literature review of in vitro studies. Int J Oral Maxillofac Surg. 2025 Jul;54(7):647-656.

PMid:39979192

 

2. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci. 2017;125:315-337.
https://doi.org/10.1111/eos.12364
PMid:28833567 PMCid:PMC5601292

 

3. Mizraji G, Davidzohn A, Gursoy M, Gursoy U, Shapira L, Wilensky A. Membrane barriers for guided bone regeneration: An overview of available biomaterials. Periodontol 2000. 2023;93:56-76.
https://doi.org/10.1111/prd.12502
PMid:37855164

 

4. An YZ, Strauss FJ, Park JY, Shen YQ, Thoma DS, Lee JS. Membrane fixation enhances guided bone regeneration in standardized calvarial defects: A pre-clinical study. J Clin Periodontol. 2022;49:177-187.
https://doi.org/10.1111/jcpe.13583
PMid:34866208

 

5. Kačarević ŽP, Rider P, Elad A, Tadic D, Rothamel D, Sauer G, et al. Biodegradable magnesium fixation screw for barrier membranes used in guided bone regeneration. Bioact Mater. 2021;14:15-30.
https://doi.org/10.1016/j.bioactmat.2021.10.036
PMid:35310352 PMCid:PMC8892133

 

6. Amukarimi S, Mozafari M. Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities. Med Comm. 2021;2:123-144.
https://doi.org/10.1002/mco2.59
PMid:34766139 PMCid:PMC8491235

 

7. Seitz JM, Eifler R, Bach FW, Maier HJ. Magnesium degradation products: effects on tissue and human metabolism. J Biomed Mater Res A. 2014;102:3744-53.
https://doi.org/10.1002/jbm.a.35023
PMid:24222399

 

8. Noviana D, Paramitha D, Ulum MF, Hermawan H. The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats. J Orthop Translat. 2015;5:9-15.
https://doi.org/10.1016/j.jot.2015.08.003
PMid:30035070 PMCid:PMC5987010

 

9. Saha S, Lestari W, Dini C, Sarian MN, Hermawan H, Barão VAR, et al. Corrosion in Mg-alloy biomedical implants: strategies to reduce the impact of the corrosion inflammatory reaction and microbial activity. J Magn All. 2022;10:3306-3326.
https://doi.org/10.1016/j.jma.2022.10.025

 

10. Chandrasekaran D, Chinnaswami R, Malathi N, Jayakumar ND. Treatment Outcome of Using Guided Bone Regeneration for Bone Augmentation for the Placement of Dental Implants - A Systematic Review. J Pharm Bioallied Sci. 2024;16:S3068-S3070.
https://doi.org/10.4103/jpbs.jpbs_834_24
PMid:39926965 PMCid:PMC11805224

 

11. Kavitha R, Kulandaivelu R, Tsn, Sankara N. Deposition of strontium phosphate coatings on magnesium by hydrothermal treatment: Characteristics, corrosion resistance and bioactivity. J All Comp. 2018;745.
https://doi.org/10.1016/j.jallcom.2018.02.200

 

12. Song MS, Li RW, Qiu Y, Man SM, Tuipulotu DE, Birbilis N, et al. Gallium-Strontium Phosphate Conversion Coatings for Promoting Infection Prevention and Biocompatibility of Magnesium for Orthopedic Applications. ACS Biomater Sci Eng. 2022;8:2709-2723.
https://doi.org/10.1021/acsbiomaterials.2c00099
PMid:35574832

 

13. Bao H, Song S, Liu H, Sun D, Zhu X, Fu Z, et al. Macrophage membrane coated nanoscale coordination polymers promote graft survival in allogeneic transplantation. J Nanobiotechnology. 2025;23:284.
https://doi.org/10.1186/s12951-025-03226-z
PMid:40197267 PMCid:PMC11978185

 

14. Al-Gamal AG, Gado WS, Abo El-Khair MA, Zakaria K, Ragab AA, Kabel KI. ZnO doped PAMAM for asphalt improvement as anti-corrosive coatings. Sci Rep. 2024;14:28352.
https://doi.org/10.1038/s41598-024-78875-5
PMid:39550404 PMCid:PMC11569143

 

15. Guo Y, Jia S, Qiao L, Su Y, Gu R, Li G, et al. A multifunctional polypyrrole/zinc oxide composite coating on biodegradable magnesium alloys for orthopedic implants. Colloids Surf B Biointerfaces. 2020;194:111186.
https://doi.org/10.1016/j.colsurfb.2020.111186
PMid:32535243

 

16. Venkatesan HM, Arun AP. High-performance triboelectric nanogenerators based on Ag-doped ZnO loaded electrospun PVDF nanofiber mats for energy harvesting and healthcare monitoring. Sci Rep. 2025;15:3347.
https://doi.org/10.1038/s41598-025-87148-8
PMid:39870719 PMCid:PMC11772763

 

17. Yuan J, Sheng B, Tang G. Liu Q. Fabrication of an antibacterial zinc oxide film on biodegradable magnesium alloy and its biocompatibility. J Mech Sci Technol. 2023;37:4401-4407.
https://doi.org/10.1007/s12206-023-0754-5

 

18. Hu H, Zhang W, Qiao Y, Jiang X, Liu X, Ding C. Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 2012;8:904-15.
https://doi.org/10.1016/j.actbio.2011.09.031
PMid:22023752

 

19. Asensio G, Arriaga H, Martín-del-Campo M, Prieto MA, González A, Rojo L, et al. Strontium/zinc phytate-based self-assembled monolayers on titanium surfaces enhance osteogenesis and antibacterial performance in vitro. Applied Surf Scien. 2023;620:156818.
https://doi.org/10.1016/j.apsusc.2023.156818

 

20. Zeng J, Guo J, Sun Z, Deng F, Ning C, Xie Y. Osteoblastic and anti-osteoclastic activities of strontium-substituted silicocarnotite ceramics: In vitro and in vivo studies. Bioact Mater. 2020 ;5:435-446.
https://doi.org/10.1016/j.bioactmat.2020.03.008
PMid:32280833 PMCid:PMC7138933

 

21. Lu T, Luhui Z, Yuan X, Ye J. A novel calcium phosphate-based ceramic scaffold with high osteogenic activity by strontium doping. Materials Today Chem. 2024;36.
https://doi.org/10.1016/j.mtchem.2024.101931

 

22. Kyllönen L, D'Este M, Alini M, Eglin D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater. 2015;11:412-34.
https://doi.org/10.1016/j.actbio.2014.09.006
PMid:25218339

 

23. Lu W, Zhou Y, Yang H, Cheng Z, He F. Efficacy of strontium supplementation on implant osseointegration under osteoporotic conditions: A systematic review. J Prosthet Dent. 2022;128:341-349.
https://doi.org/10.1016/j.prosdent.2020.12.031
PMid:33589234

 

24. Baheiraei N, Eyni H, Bakhshi B, Najafloo R, Rabiee N. Effects of strontium ions with potential antibacterial activity on in vivo bone regeneration. Sci Rep. 2021;11:8745.
https://doi.org/10.1038/s41598-021-88058-1
PMid:33888790 PMCid:PMC8062523

 

25. Molenda M, Kolmas J. The Role of Zinc in Bone Tissue Health and Regeneration- A Review. Biol Trace Elem Res. 2023;201:5640-5651.
https://doi.org/10.1007/s12011-023-03631-1
PMid:37002364 PMCid:PMC10620276

 

26. Li B, Liu H, Jia S. Zinc enhances bone metabolism in ovariectomized rats and exerts anabolic osteoblastic/adipocytic marrow effects ex vivo. Biol Trace Elem Res. 2015;163(1-2):202-7.
https://doi.org/10.1007/s12011-014-0185-3
PMid:25431298

 

27. Wang B, Yang M, Liu L, Yan G, Yan H, Feng J , et al. Osteogenic potential of Zn2+-passivated carbon dots for bone regeneration in vivo. Biomater Sci. 2019;7:5414-5423.
https://doi.org/10.1039/C9BM01181A
PMid:31633717

 

28. Mendes CR, Dilarri G, Forsan CF, Sapata VMR, Lopes PRM, de Moraes PB, et al. Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci Rep. 2022;12:2658.
https://doi.org/10.1038/s41598-022-06657-y
PMid:35173244 PMCid:PMC8850488

 

29. Missier MS, Ramakrishnan M, Veerasankar S, Dhanalakshmi C, Ponniah H, Rajeshkumar S. Antibacterial Properties of Lemon Juice-Mediated Zinc Oxide Nanoparticle and Titanium Dioxide Nanoparticle. J Pharm Bioallied Sci. 2024;16: S4421-S4425.
https://doi.org/10.4103/jpbs.jpbs_854_24
PMid:40061646 PMCid:PMC11888642

 

30. van Hengel IAJ, Tierolf MWAM, Fratila-Apachitei LE, Apachitei I, Zadpoor AA. Antibacterial Titanium Implants Biofunctionalized by Plasma Electrolytic Oxidation with Silver, Zinc, and Copper: A Systematic Review. Int J Mol Sci. 2021;22:3800.
https://doi.org/10.3390/ijms22073800
PMid:33917615 PMCid:PMC8038786