Yadalam PK, Anegundi RV, Ardila CM. A scoping review of mathematical modeling techniques for gingival keratinization: A framework for periodontal research. J Clin Exp Dent. 2025;17(10):e1267-74.

 

doi:10.4317/jced.62834

https://doi.org/10.4317/jced.62834

___

 

References

1. Ardila CM, Bedoya-García JA. Microbial resistance to oral antiseptics used in hospitalized patients: A systematic scoping review of randomized clinical trials. Spec Care Dentist. 2023;43(4):443-451.
https://doi.org/10.1111/scd.12781
PMid:36181674

 

2. Deepika BA. Comparative clinical data for gingivitis treatment using gels from Ocimum sanctum (Tulsi) and chlorhexidine (CHX). Bioinformation. 2021;17(12):1091-8.
https://doi.org/10.6026/973206300171091
PMid:35291347 PMCid:PMC8900163

 

3. Burra Anand D, Ramamurthy J, Kannan B, Jayaseelan VP, Arumugam P. N6-methyladenosine-mediated overexpression of TREM-1 is associated with periodontal disease. Odontology. 2025;113(2):834-43.
https://doi.org/10.1007/s10266-024-01009-w
PMid:39327319

 

4. Rathinam AK, Mokhtar RAR. Evolution of cardiac biomodels from computational to therapeutics. Heart Surg Forum. 2016;19(4):E208-15.
https://doi.org/10.1532/hsf.1410
PMid:27585205

 

5. Glont M, Arankalle C, Tiwari K, Nguyen TVN, Hermjakob H, Malik-Sheriff RS. BioModels Parameters: a treasure trove of parameter values from published systems biology models. Bioinformatics. 2020;36(17):4649-54.
https://doi.org/10.1093/bioinformatics/btaa560
PMid:32573648 PMCid:PMC7653554

 

6. Wysocka EM, Page M, Snowden J, Simpson TI. Comparison of rule- and ordinary differential equation-based dynamic model of DARPP-32 signalling network. PeerJ. 2022;10:e14516.
https://doi.org/10.7717/peerj.14516
PMid:36540795 PMCid:PMC9760030

 

7. Polynikis A, Hogan S, Di Bernardo M. Comparing different ODE modeling approaches of gene regulatory networks. J Theor Biol. 2009;261(3):511-30.
https://doi.org/10.1016/j.jtbi.2009.07.040
PMid:19665034

 

8. Kardynska M, Kogut D, Pacholczyk M, Smieja J. Mathematical modeling of regulatory networks of intracellular processes - aims and selected methods. Comput Struct Biotechnol J. 2023;21:1523-32.
https://doi.org/10.1016/j.csbj.2023.02.006
PMid:36851915 PMCid:PMC9958294

 

9. Truong VT, Baverel PG, Lythe GD, Vicini P, Yates JWT, Dubois VFS. Step-by-step comparison of ordinary differential equation and agent-based approaches to pharmacokinetic-pharmacodynamic models. CPT Pharmacometrics Syst Pharmacol. 2022;11(2):133-48.
https://doi.org/10.1002/psp4.12703
PMid:34399036 PMCid:PMC8846629

 

10. Sütterlin T, Tsingos E, Bensaci J, Stamatas GN, Grabe N. A 3D self-organizing multicellular epidermis model of barrier formation and hydration with realistic cell morphology based on EPISIM. Sci Rep. 2017;7:43472.
https://doi.org/10.1038/srep43472
PMid:28262741 PMCid:PMC5338006

 

11. Azevedo TA, Abrantes AM, Carvalho J. Radiobiological Modeling with Monte Carlo Tools - Simulating Cellular Responses to Ionizing Radiation. Technol Cancer Res Treat. 2025;24:15330338251350909.
https://doi.org/10.1177/15330338251350909
PMid:40671567 PMCid:PMC12276521

 

12. Juty N, Ali R, Glont M, Keating S, Rodriguez N, Swat MJ, et al. BioModels: content, features, functionality, and use. CPT Pharmacometrics Syst Pharmacol. 2015;4(2):e3.
https://doi.org/10.1002/psp4.3
PMid:26225232 PMCid:PMC4360671

 

13. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, et al. BioModels Database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol. 2010;4:92.
https://doi.org/10.1186/1752-0509-4-92
PMid:20587024 PMCid:PMC2909940

 

14. Wimalaratne SM, Grenon P, Hermjakob H, Le Novère N, Laibe C. BioModels linked dataset. BMC Syst Biol. 2014;8:91.
https://doi.org/10.1186/s12918-014-0091-5
PMid:25182954 PMCid:PMC4423647

 

15. Lohfeld S, Barron V, McHugh PE. Biomodels of bone: a review. Ann Biomed Eng. 2005;33(10):1295-311.
https://doi.org/10.1007/s10439-005-5873-x
PMid:16240079

 

16. Smith NR, Trauer JM, Gambhir M, Richards JS, Maude RJ, Keith JM, et al. Agent-based models of malaria transmission: a systematic review. Malar J. 2018;17(1):299.
https://doi.org/10.1186/s12936-018-2442-y
PMid:30119664 PMCid:PMC6098619

 

17. Stepanov V, Ferson S. Agent-based models under uncertainty. F1000Res. 2024;12:834.
https://doi.org/10.12688/f1000research.135249.3
PMid:38571568 PMCid:PMC10988201

 

18. Mls K, Kořínek M, Štekerová K, Tučník P, Bureš V, Čech P, et al. Agent-based models of human response to natural hazards: systematic review of tsunami evacuation. Nat Hazards (Dordr). 2023;115(3):1887-1908.
https://doi.org/10.1007/s11069-022-05643-x
PMid:36212893 PMCid:PMC9533266

 

19. Vodovotz Y, An G. Agent-based models of inflammation in translational systems biology: a decade later. Wiley Interdiscip Rev Syst Biol Med. 2019;11(6):e1460.
https://doi.org/10.1002/wsbm.1460
PMid:31260168 PMCid:PMC8140858

 

20. Mendes P. Reproducible research using biomodels. Bull Math Biol. 2018;80(12):3081-7.
https://doi.org/10.1007/s11538-018-0498-z
PMid:30191472 PMCid:PMC6234049

 

21. Glont M, Nguyen TVN, Graesslin M, Hälke R, Ali R, Schramm J, et al. BioModels: expanding horizons to include more modelling approaches and formats. Nucleic Acids Res. 2018;46(D1):D1248-53.
https://doi.org/10.1093/nar/gkx1023
PMid:29106614 PMCid:PMC5753244

 

22. Malpartida-Carrillo V, Tinedo-Lopez PL, Guerrero ME, Amaya-Pajares SP, Özcan M, Rösing CK. Periodontal phenotype: a review of historical and current classifications evaluating different methods and characteristics. J Esthet Restor Dent. 2021;33(3):432-45.
https://doi.org/10.1111/jerd.12661
PMid:32955762