Sharafeddin F, Jamshidi M, Moradian M. The effect of adding nanodiamond and calcium carbonate on flexural strength of resin modified and conventional glass ionomer. J Clin Exp Dent. 2025;17(9):e1063-8.

 

doi:10.4317/jced.63027

https://doi.org/10.4317/jced.63027

___

 

References

1. Ghodrati P, Sharafeddin F. Evaluation of the effect of nano-graphene oxide on shear bond strength of conventional and resin-modified glass ionomer cement. Clin Exp Dent Res. 2023;9:851-8.
https://doi.org/10.1002/cre2.789
PMid:37737558 PMCid:PMC10582219

 

2. Asadi M, Majidinia S, Bagheri H, Hoseinzadeh M. The Effect of Formulated Dentin Remineralizing Gel Containing Hydroxyapatite, Fluoride, and Bioactive Glass on Dentin Microhardness: An In Vitro Study. Int J Dent. 2024;2024:4788668.
https://doi.org/10.1155/2024/4788668
PMid:39376678 PMCid:PMC11458271

 

3. Sharafeddin F, Alavi A A, Siabani S, Safari M. Comparison of Shear Bond Strength of Three Types of Glass Ionomer Cements Containing Hydroxyapatite Nanoparticles to Deep and Superficial Dentin. J Dent (Shiraz). 2020;21:132-40.

PMid:32582829 PMCid:PMC7280551

 

4. Sidhu S K, Nicholson J W. A review of glass-ionomer cements for clinical dentistry. J Funct Biomater. 2016;7:16-25.
https://doi.org/10.3390/jfb7030016
PMid:27367737 PMCid:PMC5040989

 

5. Chau N P, Pandit S, Cai J N, Lee M H, Jeon J G. Relationship between fluoride release rate and anti-cariogenic biofilm activity of glass ionomer cements. Dent Mater. 2015;31:e100-8.
https://doi.org/10.1016/j.dental.2014.12.016
PMid:25600801

 

6. Agha A, Parker S, Patel M P. Development of experimental resin modified glass ionomer cements (RMGICs) with reduced water uptake and dimensional change. Dent Mater. 2016;32:713-22.
https://doi.org/10.1016/j.dental.2016.03.004
PMid:27025570

 

7. Gjorgievska E, Van Tendeloo G, Nicholson JW, Coleman NJ, Slipper IJ, Booth S. The incorporation of nanoparticles into conventional glass-ionomer dental restorative cements. Microsc Microanal Microstruct. 2015;21:392-406.
https://doi.org/10.1017/S1431927615000057
PMid:25691120

 

8. Najeeb S, Khurshid Z, Agwan AS, Zafar MS, Alrahabi M, Qasim SB, et al. Dental applications of nanodiamonds. Sci Adv Mater. 2016;8:2064-70.
https://doi.org/10.1166/sam.2016.2993

 

9. Osswald S, Yushin G, Mochalin V, Kucheyev S O, Gogotsi Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. JACS. 2006;128:11635-42.
https://doi.org/10.1021/ja063303n
PMid:16939289

 

10. Krueger A, Lang D. Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater. 2012;22:890-906.
https://doi.org/10.1002/adfm.201102670

 

11. Mydin RBS, Mydin RBSMN, Nadhirah I, Ishak NN, Shaida N. Potential of Calcium Carbonate Nanoparticles for Therapeutic Applications. MJMHS. 2018;14:2636-9346.

 

12. Parhizkar M, Shelesh-Nezhad K, Rezaei A. Mechanical and thermal properties of Homo-PP/GF/CaCO3 hybrid nanocomposites. Adv Mater Res. 2016;5:121.
https://doi.org/10.12989/amr.2016.5.2.121

 

13. Yang G, Heo YJ, Park SJ. Effect of morphology of calcium carbonate on toughness behavior and thermal stability of epoxy-based composites. Processes. 2019;7:178.
https://doi.org/10.3390/pr7040178

 

14. Hakamy A. Effect of CaCO3 nanoparticles on the microstructure and fracture toughness of ceramic nanocomposites. J Taibah Univ Sci. 2020;14:1201-7.
https://doi.org/10.1080/16583655.2020.1809840

 

15. Bernardi A, et al. Effects of the addition of nanoparticulate calcium carbonate on setting time, dimensional change, compressive strength, solubility and pH of MTA. Int Endod J. 2017;50:97-105.
https://doi.org/10.1111/iej.12594
PMid:26659859

 

16. Mahmoud N, Metwally A. Fluoride release and recharging ability of glass ionomer cement incorporating hydroxyapatite nanoparticles. Egypt Dent J. 2021;67:3741-9.
https://doi.org/10.21608/edj.2021.89027.1732

 

17. Sharafeddin F, Alavi A A, Siabani S, Safari M. Comparison of shear bond strength of three types of glass ionomer cements containing hydroxyapatite nanoparticles to deep and superficial dentin. J Dent. 2020;21:132.

PMid:32582829 PMCid:PMC7280551

 

18. Sideridou I D, Karabela M M, Bikiaris D N. Aging studies of light cured dimethacrylate-based dental resins and a resin composite in water or ethanol/water. Dent Mater. 2007;23:1142-9.
https://doi.org/10.1016/j.dental.2006.06.049
PMid:17118438

 

19. Moheet I A, et al. Modifications of Glass Ionomer Cement Powder by Addition of Recently Fabricated Nano-Fillers and Their Effect on the Properties: A Review. Eur J Dent. 2019;13:470-7.
https://doi.org/10.1055/s-0039-1693524
PMid:31280484 PMCid:PMC6890502

 

20. Wang K, Zheng M, Yan S, Gao Z, Hu Y, Peng L, et al. Study on the influence mechanism of calcium carbonate particles on mechanical properties of microcrack cement. Constr Build Mater. 2024;411:134563.
https://doi.org/10.1016/j.conbuildmat.2023.134563

 

21. Wu Z, Khayat K H, Shi C, Tutikian B F, Chen Q. Mechanisms underlying the strength enhancement of UHPC modified with nano-SiO2 and nano-CaCO3. Cem Concr Compos. 2021;119:103992.
https://doi.org/10.1016/j.cemconcomp.2021.103992

 

22. Parisay I, Moodi M, Boskabady M, Bagheri H, Salari R, Hoseinzadeh M. Physical and drug- releasing properties of a cement containing simvastatin (SimCeram). BMC Oral Health. 2025;25:684.
https://doi.org/10.1186/s12903-025-06045-8
PMid:40325441 PMCid:PMC12051323

 

23. He H, Li K, Wang J, Sun G, Li Y, Wang J. Study on thermal and mechanical properties of nano-calcium carbonate/epoxy composites. Mater Design. 2011;32:4521-7.
https://doi.org/10.1016/j.matdes.2011.03.026

 

24. Mortazavi V, Fathi M, Ataei E, Khodaeian N, Askari N. Shear bond strengths and morphological evaluation of filled and unfilled adhesive interfaces to enamel and dentine. Int J Dent. 2012;2012:858459.
https://doi.org/10.1155/2012/858459
PMid:23209471 PMCid:PMC3502849

 

25. Bhatnagar D, Gautam S, Batra H, Goyal N. Enhancement of Fracture Toughness in carbonate doped Hydroxyapatite based nanocomposites: Rietveld analysis and Mechanical behaviour. J Mech Behav Biomed Mater. 2023;142:105814.
https://doi.org/10.1016/j.jmbbm.2023.105814
PMid:37030169

 

26. Ismail H, Mohamad H. Effects of CaCO3 additive on the phase, physical, mechanical, and microstructural properties of zirconia-toughened alumina-CeO2-Nb2O5 ceramics. Ceram Int. 2023;49:36850-6.
https://doi.org/10.1016/j.ceramint.2023.09.015

 

27. Allam G, Abd El-Geleel O. Evaluating the Mechanical Properties, and Calcium and Fluoride Release of Glass-Ionomer Cement Modified with Chicken Eggshell Powder. Dent J. 2018;6:40.
https://doi.org/10.3390/dj6030040
PMid:30126207 PMCid:PMC6162507

 

28. Albasso A S, Ali R R, Yahya A A. In vitro evaluation of some mechanical properties and fluoride release of glass-ionomer cement modified with seashell nanoparticles. J Dent Res Dent Clin Dent Prospects. 2024;18:165-71.
https://doi.org/10.34172/joddd.41084
PMid:39386121 PMCid:PMC11459085

 

29. Fouda S M, Gad MM, Ellakany P, Al Ghamdi MA, Khan SQ, Akhtar S, et al. Flexural Properties, Impact Strength, and Hardness of Nanodiamond-Modified PMMA Denture Base Resin. Int J Biomater. 2022;12:65-78.
https://doi.org/10.1155/2022/6583084
PMid:35855810 PMCid:PMC9288300

 

30. Cao W, Zhang Y, Wang X, Li Q, Xiao Y, Li P, et al. Novel resin-based dental material with anti-biofilm activity and improved mechanical property by incorporating hydrophilic cationic copolymer functionalized nanodiamond. J Mater Sci Mater Med. 2018;29:162.
https://doi.org/10.1007/s10856-018-6172-z
PMid:30357538

 

31. Gad M M, Ali MS, Al-Thobity AM, Al-Dulaijan YA, El Zayat M, Emam ANM, et al. Polymethylmethacrylate Incorporating Nanodiamonds for Denture Repair: In Vitro Study on the Mechanical Properties. Eur J Dent. 2022;16:286-95.
https://doi.org/10.1055/s-0041-1735792
PMid:34823262 PMCid:PMC9339932

 

32. Mangal U, Kim JY, Seo JY, Kwon JS, Choi SH. Novel Poly(Methyl Methacrylate) Containing Nanodiamond to Improve the Mechanical Properties and Fungal Resistance. Materials. 2019;12:3438.
https://doi.org/10.3390/ma12203438
PMid:31640147 PMCid:PMC6829541

 

33. Wang M, Zhang K, Hou D, Wang P. Microscopic insight into nanodiamond polymer composites: reinforcement, structural, and interaction properties. Nanoscale. 2020;12:24107-18.
https://doi.org/10.1039/D0NR07780A
PMid:33241812

 

34. Chu YQ, Tong Y, Zhang TL, Huang FL. Mechanical properties of dental composite resins containing nanodiamond of different diameters. BIT. 2012;21:19-22.

 

35. He H, Zhang Z, Wang J, Li K. Compressive properties of nano-calcium carbonate/epoxy and its fibre composites. Composites Part B: Engineering. 2013;45:919-24.
https://doi.org/10.1016/j.compositesb.2012.09.050

 

36. Malhotra S, Bhullar KK, Kaur S, Malhotra M, Kaur R, Handa A. Comparative evaluation of compressive strength and flexural strength of gc gold hybrid, gic conventional and resin-modified glass-ionomer cement. Pharm Bioallied Sci. 2022;14:S214-S6.
https://doi.org/10.4103/jpbs.jpbs_134_22
PMid:36110748 PMCid:PMC9469278

 

37. Techa-Ungkul C, Sakoolnamarka R. The effect of dentin age on the microshear bond strength and microleakage of glass-ionomer cements. Gerodontology. 2021;38:259-66.
https://doi.org/10.1111/ger.12520
PMid:33354808

 

38. Parisay I, Boskabady M, Bagheri H, Babazadeh S, Hoseinzadeh M, Esmaeilzadeh F. Investigating the efficacy of a varnish containing gallic acid on remineralization of enamel lesions: an in vitro study. BMC Oral Health. 2024;24:175.
https://doi.org/10.1186/s12903-024-03921-7
PMid:38308290 PMCid:PMC10837966