Neves PTO, Diniz JV, Lins LBC, Gomes JML, Bruno Casado GS, Leão RS. Microbiological behavior of 3D printing materials for indirect restorations: A scoping review. J Clin Exp Dent. 2026;18(2):e270-8.

 

doi:10.4317/jced.63656

https://doi.org/10.4317/jced.63656

___

 

References

1. Arutyunov S, Kirakosyan L, Dubova L, Kharakh Y, Malginov N, Akhmedov G, et al. Microbial adhesion to dental polymers for conventional, computer-aided subtractive and additive manufacturing: A comparative in vitro study. J Funct Biomater. 2022;13:42.
https://doi.org/10.3390/jfb13020042
PMid:35466224 PMCid:PMC9036260

 

2. Özer NE, Şahin Z, Yıkıcı C, Duyan S, Kılıçarslan MA. Bacterial adhesion to composite resins produced by additive and subtractive manufacturing. Odontology. 2024;112:460-471.
https://doi.org/10.1007/s10266-023-00862-5
PMid:37819468

 

3. Giti R, Dabiri S, Motamedifar M, Derafshi R. Surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by different methods. PLoS One. 2021;16:e0249551.
https://doi.org/10.1371/journal.pone.0249551
PMid:33819292 PMCid:PMC8021148

 

4. Arnold C, Sigg H, Schmidlin PR, Roos M. Surface quality of 3D-printed models as a function of various printing parameters. Materials. 2019;12:1970.
https://doi.org/10.3390/ma12121970
PMid:31248083 PMCid:PMC6631072

 

5. Jin G, Ravichandran V, Shim MS, Kim JE. Incorporating an artificially synthesized fluoride complex into urethane-acrylate-based 3D printing resin: Effects on mechanical properties, cytotoxicity, antimicrobial actions, and its long-term fluoride-releasing properties. J Dent. 2024;150:105363.
https://doi.org/10.1016/j.jdent.2024.105363
PMid:39349093

 

6. Aati S, Shrestha B, Fawzy A. Cytotoxicity and antimicrobial efficiency of ZrO2 nanoparticles reinforced 3D printed resins. Dent Mater. 2022;38:1432-1442.
https://doi.org/10.1016/j.dental.2022.06.030
PMid:35792014

 

7. Marigo L, Gallina G, Malacarne-Zanon J, Bossù M, Polimeni A. Influences of different air-inhibition coatings on monomer release, microhardness, and color stability of two composite materials. Biomed Res Int. 2019;2019:4240264.
https://doi.org/10.1155/2019/4240264
PMid:31211136 PMCid:PMC6532316

 

8. Aati S, Chauhan A, Shrestha B, Rajan SM, Aati H, Fawzy A. Development of 3D printed dental resin nanocomposite with graphene nanoplatelets enhanced mechanical properties and induced drug-free antimicrobial activity. Dent Mater. 2022;38:1921-1933.
https://doi.org/10.1016/j.dental.2022.10.001
PMid:36266113

 

9. Mangal U, Min YJ, Seo JY, Kim DE, Cha JY, Lee KJ, et al. Changes in tribological and antibacterial properties of poly(methyl methacrylate)-based 3D-printed intra-oral appliances by incorporating nanodiamonds. J Mech Behav Biomed Mater. 2020;110:103992.
https://doi.org/10.1016/j.jmbbm.2020.103992
PMid:32750663

 

10. Wang S, Dai J, Xu S, Li P, Fouda AM, Yilmaz B, et al. Surface characteristics, cytotoxicity, and microbial adhesion of 3D-printed hybrid resin-ceramic materials for definitive restoration. J Dent. 2025;152:105436.
https://doi.org/10.1016/j.jdent.2024.105436
PMid:39488296

 

11. Mazurek-Popczyk J, Nowicki A, Arkusz K, Pałka Ł, Zimoch-Korzycka A, Baldy-Chudzik K. Evaluation of biofilm formation on acrylic resins used to fabricate dental temporary restorations with the use of 3D printing technology. BMC Oral Health. 2022;22:442.
https://doi.org/10.1186/s12903-022-02488-5
PMid:36229871 PMCid:PMC9563793

 

12. Lins LBC, Silva LFD, Araújo RM, Leite FC, Silva-Neto JP, Neves FD. Effect of three-dimensional print angle on integrity of interim crowns: A systematic review. J Prosthet Dent. 2025;134(5):1567-1576.
https://doi.org/10.1016/j.prosdent.2024.07.023
PMid:39181773

 

13. Tsareva TV, Khabibullina LF, Rogova SV. Clinical significance of adhesion of oral microbiota representatives to polymer materials recommended for dental computer milling and 3D printing technologies. Clinical Dentistry. 2020;3:113-118.
https://doi.org/10.37988/1811-153X_2020_3_113

 

14. Di Fiore A, Meneghello R, Brun P, Rosso S, Gattazzo A, Stellini E. Comparison of the flexural and surface properties of milled, 3D-printed, and heat-polymerized PMMA resins for denture bases: An in vitro study. J Prosthodont Res. 2022;66:502-508.
https://doi.org/10.2186/jpr.JPR_D_21_00116
PMid:34853238

 

15. Freitas RFCP, Neves ACC, da Silva RHA, Noritomi PY, Urban VM. Physical, mechanical, and anti-biofilm formation properties of CAD-CAM milled or 3D printed denture base resins: In vitro analysis. J Prosthodont. 2023;32:38-44.
https://doi.org/10.1111/jopr.13554
PMid:35661475

 

16. Arksey H, O'Malley L. Scoping studies: Towards a methodological framework. Int J Soc Res Methodol. 2005;8:19-32.
https://doi.org/10.1080/1364557032000119616

 

17. Peters MDJ, Godfrey CM, McInerney P, Munn Z, Tricco AC, Khalil H. Chapter 11: Scoping reviews. In: JBI Manual for Evidence Synthesis. Adelaide: JBI. 2020.
https://doi.org/10.46658/JBIRM-20-01

 

18. Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med. 2018;169:467-473.
https://doi.org/10.7326/M18-0850
PMid:30178033

 

19. Ribeiro AKC, Freitas RFCP, Carvalho IHG, Miranda LM, Silva NR, Dantas de Almeida LF, et al. Flexural strength, surface roughness, micro-CT analysis, and microbiological adhesion of a 3D-printed temporary crown material. Clin Oral Investig. 2023;27:2207-2212.
https://doi.org/10.1007/s00784-023-04941-3
PMid:36933047 PMCid:PMC10164099

 

20. Arutyunov AS, Danilova MA, Gryaznova MV. Features and significance of bacterial and fungal adhesion in the oral cavity as a stage in the formation of microbial biofilm on dental polymer materials. Stomatologiia. 2020;99:79-84.
https://doi.org/10.17116/stomat20209902179
PMid:32441080

 

21. Bächle J, Merle C, Hahnel S, Rosentritt M. Bacterial adhesion on dental polymers as a function of manufacturing techniques. Materials. 2023;16:2373.
https://doi.org/10.3390/ma16062373
PMid:36984253 PMCid:PMC10054275

 

22. Kumari MK, Sinha A, Prasad A, Reddy M. A comparative analysis of bacterial adhesion on different long-term provisional fixed prostheses fabricated by CAD/CAM milling, 3D printing, and heat cure technique: An in vivo study. J Pharm Bioallied Sci. 2024;16:S921-S923.
https://doi.org/10.4103/jpbs.jpbs_1096_23
PMid:38595350 PMCid:PMC11000879

 

23. Taşin S, Güvenir M, Ismatullaev A. Effects of surface characteristics of conventionally manufactured, CAD/CAM milled, and 3D-printed interim materials on adherence of Streptococcus mutans and Candida albicans. Cumhur Dent J. 2023;26:227-234.
https://doi.org/10.7126/cumudj.1228677

 

24. Kim HT, Jang YS, Lee HK, Lee JW. Surface properties and biofilm formation on resins for subtractively and additively manufactured fixed dental prostheses aged in artificial saliva: Effect of material type and surface finishing. J Prosthet Dent. 2025;133:594.e1-594.e9.
https://doi.org/10.1016/j.prosdent.2024.10.039
PMid:39572363

 

25. Parakaw T, Supanimitkul K, Lertwattanaruk K, Piwat S, Pithayanukul P. Biocompatibility and biofilm formation on conventional and CAD/CAM provisional implant restorations. BMC Oral Health. 2023;23:718.
https://doi.org/10.1186/s12903-023-03468-z
PMid:37798682 PMCid:PMC10552236

 

26. Simoneti DM, Pereira-Cenci T, Dos Santos MBF. Comparison of material properties and biofilm formation in interim single crowns obtained by 3D printing and conventional methods. J Prosthet Dent. 2022;127:168-172.
https://doi.org/10.1016/j.prosdent.2020.06.026
PMid:33168174

 

27. Liu SA, Zhang M, Ren B, Zhang Y, Li J, Wang X, et al. 3D printing dental composite resins with sustaining antibacterial ability. J Mater Sci. 2019;54:3309-3318.
https://doi.org/10.1007/s10853-018-2801-7

 

28. Elmalah NS, El-Fallal AA, El-Sebaie HT, El-Din MS. Effect of nanomodified 3D printed photopolymerizable resin on flexural strength, color, and antimicrobial efficacy: An in vitro study. J Prosthet Dent. 2024;132:268.e1-268.e8.
https://doi.org/10.1016/j.prosdent.2024.03.036
PMid:38632027

 

29. Yue J, Zhao S, Zhang J, Dong Y, Guo X, Li X. 3D-printable antimicrobial composite resins. Adv Funct Mater. 2015;25:6756-6767.
https://doi.org/10.1002/adfm.201502384

 

30. Kim HT, Jo YH, Jee EB, Yoon HI, Yilmaz B. Effect of post-polymerization time and atmosphere on surface properties and biofilm formation in additively manufactured resins for definitive restorations. J Dent. 2024;147:105143.
https://doi.org/10.1016/j.jdent.2024.105143
PMid:38906456