Journal section: Oral Medicine and Pathology Publication Types: Review doi:10.4317/medoral.20872 http://dx.doi.org/doi:10.4317/medoral.20872

Recurrent aphthous stomatitis and Helicobacter pylori

Carolina-Cavaliéri Gomes 1, Ricardo-Santiago Gomez 2, Lívia-Guimarães Zina 3, Fabrício-Rezende Amaral 2.4

- ¹ Department of Pathology, Biological Sciences Institute, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- ² Department of Oral Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- ³ Department of Social and Preventive Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- ⁴ Dentist of the Oral Medicine Service of the Brazilian Army

Correspondence: Universidade Federal de Minas Gerais Faculdade de Odontologia Av. Antônio Carlos 6627 Pampulha - 31270-901 Belo Horizonte, Minas Gerais, Brazil framaral2@gmail.com

Received: 13/06/2015 Accepted: 14/10/2015 Gomes CC, Gomez RS, Zina LG, Amaral FR. Recurrent aphthous stomatitis and *Helicobacter pylori*. Med Oral Patol Oral Cir Bucal. 2016 Mar 1:21 (2):e187-91

http://www.medicinaoral.com/medoralfree01/v21i2/medoralv21i2p187.pdf

Article Number: 20872 http://www.medicinaoral.com/
© Medicina Oral S. L. C.I.F. B 96689336 - pISSN 1698-4447 - eISSN: 1698-6946
eMail: medicina@medicinaoral.com
Indexed in:

Science Citation Index Expanded Journal Citation Reports Index Medicus, MEDLINE, PubMed Scopus, Embase and Emcare Indice Médico Español

Abstract

Background: Recurrent aphthous stomatitis (RAS) is a recurrent painful ulcerative disorder that commonly affects the oral mucosa. Local and systemic factors such as trauma, food sensitivity, nutritional deficiencies, systemic conditions, immunological disorders and genetic polymorphisms are associated with the development of the disease. *Helicobacter pylori* (*H. pylori*) is a gram-negative, microaerophile bacteria, that colonizes the gastric mucosa and it was previously suggested to be involved in RAS development. In the present paper we reviewed all previous studies that investigated the association between RAS and *H. pylori*.

Material and Methods: A search in Pubmed (MEDLINE) databases was made of articles published up until July 2015 using the following keywords: *Helicobacter Pylori or H. pylori* and RAS or Recurrent aphthous stomatitis. Results: Fifteen experimental studies that addressed the relationship between infection with *H. pylori* and the presence of RAS and three reviews, including a systematic review and a meta-analysis were included in this review. The studies reviewed used different methods to assess this relationship, including PCR, nested PCR, culture, ELISA and urea breath test. A large variation in the number of patients included in each study, as well as inclusion criteria and laboratorial methods was observed. *H. pylori* can be detected in the oral mucosa or ulcerated lesion of some patients with RAS. The quality of the all studies included in this review was assessed using levels of evidence based on the University of Oxford's Center for Evidence Based Medicine Criteria.

Conclusions: Although the eradication of the infection may affect the clinical course of the oral lesions by undetermined mechanisms, RAS ulcers are not associated with the presence of the bacteria in the oral cavity and there is no evidence that *H. pylori* infection drives RAS development.

Key words: Campylobacter, elisa, h. pylori, Helicobacter Pylori, RAS, recurrent aphthous stomatitis, PCR.

Introduction

Recurrent aphthous stomatitis (RAS) is a very common condition characterized by solitary or multiple small, round, recurrent oral ulcers, with erythematous haloes and circumscribed margins. The appearance of the painful ulcers is periodic and the onset is usually during childhood and tends to diminish in severity with age (1). The diagnosis of RAS is based on clinical grounds but the etiology and pathogenesis remain unclear (2). Local and systemic factors have been suggested to affect the development of RAS. These factors are illustrated in the figure 1. For example, some genetic polymorphisms are associated with the occurrence of RAS (3). Some predisposing factors include trauma, hormonal changes, diet, nutritional deficiencies, Coeliac disease, and immunological disorders (4,5). Regarding nutritional deficiencies, some studies have found decreased levels of iron, vitamin B3 and B12, vitamin C, and folic acid (2).

Helicobacter pylori (H. pylori) is a gram-negative, microaerophile bacteria, that colonizes the gastric mucosa and its infection is associated with the development of peptic ulcers, gastric mucosa associated lymphoid tissue lymphoma, and gastric cancer (6). Although H. pylori infection has been suggested to be one of the etiological factors in the pathogenesis of RAS, this association is debatable. In the present paper we review this issue and present the available evidence regarding this controversial topic.

Nutritional factors
Gluten-sensitive enteropathy
Iron, folic acid, zinc, vitamin B1, B2, B6 and B12 deficiencies

Physical injuries

Food sensitivity

Genetic factors

Hormonal changes

Immune system dysregulation

Systemic conditions
Behçet disease
Cyclic neutropenia
Crohn disease
Ulcerative colitis

Periodic fever, aphtosis, pharyngitis, and adenitis (PFAPA)
Acute neutrophilic dermatosis (Sweet syndrome)
Mouth and genital ulcers with inflammed cartilage (MAGIC) syndrome

Fig. 1. Clinical picture of a RAS lesion and the etiological factors associated with its development.

Material and Methods

- Association between RAS and *helicobacter pylori* In this review, a search in Pubmed (MEDLINE) databases was made of articles published up until July 2015 using the following keywords: *Helicobacter Pylori* or *H. pylori* and RAS or Recurrent aphthous stomatitis. We included experimental and review studies that assessed the relationship between *H. pylori* and RAS. Quality of the studies was assessed using levels of evidence based on the University of Oxford's Center for Evidence Based Medicine Criteria (CEMB 2009) (Table 1).

Table 1. Classification of the studies selected for review according to type of study and level of evidence (CEMB 2009).

Authors	Type of study	Level of evidence
Porter et al. (17)	Transversal	4
Mravak-Stipetic et al. (10)	Transversal	4
Chapman et al. (7)	Case-series	4
Birek et al. (11)	Case-series	4
Riggio et al. (8)	Case-control	4
Shimoyama et al. (12)	Case-series	4
Victoria et al. (13)	Case-control	4
Iamaron et al. (14)	Case-control	4
Fritscher et al. (15)	Case-control	4
Mansour-Ghanaei et al. (16)	Case-series	4
Elsheik & Marfouz. (9)	Case-control	4
Albanidou-Farmaki et al. (25)	Case-series	4
Karaca et al. (23)	Case-series	4
Maleki et al. (18)	Case-control	3b
Afghari et al. (26)	Systematic review	3a
Tas et al. (24)	Case-series	4
Li et al. (27)	Meta-analysis	3a
Adler et al. (28)	Review	NC

NC: not classified.

Results and Discussion

We included in this review fifteen experimental studies that addressed the relationship between infection with H. pylori and the presence of RAS and three reviews, including a systematic review and a meta-analysis that assessed this association (Table 2). As shown in table 2 there was a large variation in the number of patients evaluated in each study as well as the methods used to collect the samples or to identify H. pylori. While in some studies biopsies of the lesions were used (7-9), others used swabs (10-16). Ten out of fifteen studies did not demonstrate a statistically significant association between H. pylori and the presence of RAS (7,8,10,12-18). Another important variation that affects the analysis of the studies is the inclusion criteria used to diagnose RAS. As the histopathological features of RAS are nonspecific and the diagnosis is based on clinical grounds, the standardization of patients' selection in future studies is important. There are good reviews about the clinical and diagnostic aspects of the disease (19).

The polymerase chain reaction (PCR) method was used to identify the presence of *H. pylori* DNA in eight studies (8-11,13-16). In two of them, the authors reported a statistically significant association between *H.pylori* presence and RAS (9,11). While Birek *et al.* (11) detected *H. pylori* in 72% of RAS samples using PCR and RT-PCR, Elsheikh & Mahfouz (9) reported that this was mainly observed in lesions localized in mucosa-associ-

Table 2. Studies that investigated the association between recurrent aphthous stomatitis (RAS) development and H. pylori infection.

Authors	Year	Country	Number of patients with RAS	Methods	Association between RAS and <i>H. pylori</i>
Porter et al. (17)	1997	UK	75	ELISA	Negative
Mravak-Stipetic et al. (10)	1998	Croatia	32	Nested PCR	Negative
Chapman et al. (7)	1998	Lebanon	4	CLO culture and test	Negative
Birek et al. (11)	1999	Canada	32	PCR and RT-PCR	Positive
Riggio et al. (8)	2000	UK	28	Culture/PCR	Negative
Shimoyama et al. (12)	2000	Japan	12	Culture/ELISA	Negative
Victoria et al. (13)	2003	Brazil	36	Nested PCR	Negative
Iamaron et al. (14)	2003	Thailand	22	Nested PCR	Negative
Fritscher et al. (15)	2004	Brazil	52	Nested PCR	Negative
Mansour-Ghanaei et al. (16)	2005	Iran	50	PCR/ELISA	Negative
Elsheik & Marfouz. (9)	2005	Egypt	146	PCR	Positive
Albanidou-Farmaki et al. (25)	2005	Greece	48	ELISA/C-urea test	Positive
Karaca et al. (23)	2008	Turkey	23	Endoscopy biopsy/Histologic evaluation	Positive
Maleki et al. (18)	2009	Iran	43	Urea breath test (UBT)	Negative
Afghari et al. (26)	2011	Iran	-	Systematic review	Negative
Tas et al. (24)	2013	Turkey	46	Endoscopic biopsy/urea breath test	Positive
Li et al. (27)	2014	China	-	Meta-analysis	Positive
Adler et al. (28)	2014	Argentina	_	Review	Positive

PCR: Polymerase chain reaction, RT-PCR: reverse transcription PCR, ELISA: Enzyme-linked immunosorbent assay, UBT: Urea breath test.

ated lymphoid tissue of pharynx. However, it is necessary to emphasise that the simple detection of the bacteria in the oral lesion does not mean a causal relationship, as the microorganism may be a "passenger" and may not be the initiating factor of the disease. Most of the studies that employed PCR or nested PCR did not find association between the presence of the bacteria in the oral lesions and its development (8,10,13-16). *H. pylori* DNA was detected between 2% and 38.9% of RAS lesions included in the studies (8,10,13-16). None of these studies reported a statistically significant difference be-

tween the number of positive samples in the case and control groups. It is interesting that all authors who used the highly sensitive nested PCR method to detect the presence of *H. pylori* DNA in oral lesions did not find a positive relationship (10,13-15). The frequency of *H. pylori* in the non-affected oral mucosa of patients with RAS is not different from those without this condition (10,13-15).

Song *et al.* (20) compared three of the most used sets of primers for PCR analysis of *H. pylori* on samples of dental plaque. They concluded that the primer pairs

EHC-U/EHC-L was the most recommended for the detection of H. pylori in the oral cavity. An important issue that should be addressed is that the PCR-based studies used different primers, some of which specific to conserved regions of the H. pylori genome, and some detecting the variable regions of the genome. The possible presence of other Helicobacter-like species in the mouth such as Campylobacter Rectus, Campylobacter Curvus and Campylobacter Concisus that are periodontopathogens and have up to 90% similarity with H. pylori is also a factor that needs to be considered (21). In addition, some of the primers used in the studies could also amplify other Helicobacter species that have also been found in human gut, such as H. fennelliae, H cinaedias (22). Thus appropriate positive and negative controls together with DNA direct sequencing of the PCR product are necessary to define the best PCR conditions and primers that should be used to detect H. pylori in samples collected from the oral cavity.

In two studies, patients with RAS were submitted to endoscopy biopsy to detect H. pylori (23,24). Both studies showed a positive relationship between the presence of the bacteria in the stomach and the occurrence of RAS in the mouth. In the studies of Karaca et al. (23) and Tas et al. (24) 87% and 65% of the patients with RAS, respectively, showed the bacteria in the gastric mucosa. In four studies, the enzyme-linked immunosorbant assay (ELISA) was used to detect specific antibodies to H. pylori in RAS patients (12,16,17,25). In the study of Farmaki et al. (25) most of the patients with RAS were H. pylori positive in the ELISA test of serum and saliva. The other studies that performed ELISA did not find association between the presence of anti-H. pylori antibodies and RAS. Mansour-Ghanaei et al. (16) found that 26 (52%) of 50 subjects with RAS analysed were positive for H. pylori in the ELISA test. Of these, 16 patients had gastric disorders and 10 did not. These authors did not find a relationship between H. pylori positivity in the ELISA test and the presence of this bacterium in RAS lesions. In the study of Porter et al. (17) the frequency of anti-H. pylori seropositivity was not significantly greater in patients with RAS (30.6%) compared with patients with other ulcerated lesions (33.0%) and controls (24%). Shimoyama et al. (12) measured the presence of IgG antibody against H. pylori in the serum of 12 patients and found only three seropositive cases. Although no temporal analysis was performed in any of these studies, on the basis of these ELISA-based findings, there is no sound evidence of any association

Two studies used culture to detect *H. pylori* in RAS lesions. Shimoyama *et al.* (12) employed culture in samples collected by swabbing in the ulcer surface of 12 patients to detect *H. pylori*. Their results showed that none of 12 patients were positive for the bacteria in the culture. Chapman *et al.* (7) did not find the presence

between the *H. pylori* infection and RAS.

of the *H. pylori* in the biopsy samples obtained from patients with active RAS and history of RAS after performing CLO (*Campylobacter-like* organism) culture. In addition, no association between *H. pylori* and RAS was observed by Maleki *et al.* (18) using the UBT (Urea Breath Test). Furthermore, it is important to state that *H. pylori* in the oral cavity might be in a non-culturable coccoid state without the productive infection (12).

Recent literature review, including a systematic review and a meta-analysis, assessed the association between the infection by *H. pylori* and RAS. Afghari *et al.* (26) after reviewing nine publications up to 2011, concluded that there is no association. Li *et al.* (27) conducted a meta-analysis on studies published up to 2013 that evaluated the prevalence of infection by *H. pylori* in patients with RAS and controls. In this review they found an increased risk of RAS in patients with infection by *H. pylori* and eradication of this infection may prevent occurrence of RAS. Adler *et al.* (28) in a revision concluded that *H. pylori* infection in the occurrence of RAS would be associated with the anemia produced by *H pylori*-positive stomach disease.

- Helicobacter pylori eradication and RAS

While there is no evidence that RAS ulcers are directly associated with the infection by *H. pylori*, some studies have demonstrated that the eradication of the bacteria affects the clinical course of the oral disease (23-25). Karaca et al. (23) studied 23 patients with RAS and performed endoscopy and gastric biopsies. The patients with H. pylori were put on an eradication therapy and follow-up for annual recurrence. They observed significant positive effect of eradication on the recurrence rate. number, diameter, and amelioration of time of RAS. Albanidou-Farmaki et al. (25) studied 34 RAS patients that were positive for H. pylori. After the eradication therapy, the group of patients who had become negative showed a remarkable improvement with respect to recurrence of RAS lesions and symptom intensity. Tas et al. (24) studied forty-six patients with RAS during 6 months and recorded vitamin B12 levels. Thirty of these 46 subjects were positive for *H. pylori*. They found that vitamin B12 levels were significantly increased in the group of *H. pylori*-eradicated RAS patients. In addition, the number of RAS lesions in these patients decreased significantly. This study suggests that vitamin B₁₂ levels could be the underlying mechanism that explains the effect of *H. pylori* eradication on RAS development. However, these findings need to be further confirmed in a large group of patients with a long follow-up period. Furthermore, other biological mechanisms related to H. pylori infection and treatment should be investigated.

Conclusion

The *H. pylori* can be occasionally detected in RAS lesions and the eradication of the infection may affect the

clinical course of RAS lesions by undetermined mechanisms. However, most of the studies do not support the association of RAS ulcers with the presence of the bacteria in the oral cavity and the presence of the bacteria in the ulcer may reflect a passenger infection and not the trigger event. There is no convincing evidence of a direct cause- consequence effect of *H. pylori* infection and RAS ulcers development. This association requires further investigation by well-design prospective studies. The debate goes on.

References

- 1. Scully C, Gorsky M, Lozada-Nur F. The diagnosis and management of recurrent aphthous stomatitis: a consensus approach. J Am Dent Assoc. 2003;134:200-7.
- 2. Chavan M, Jain H, Diwan N, Khedkar S, Shete A, Durkar S. Recurrent aphthous stomatitis: a review. J Oral Pathol Med. 2012;41:577-83.
- 3. Guimaraes AL, Correia-Silva JF, Sa AR, Victória JM, Diniz MG, Costa FO, et al. Investigation of functional gene polymorphisms IL-lbeta, IL-6, IL-10 and TNF-alpha in individuals with recurrent aphthous stomatitis. Arch Oral Biol. 2007;52:268-72.
- 4. McCullough MJ, Abdel-Hafeth S, Scully C. Recurrent aphthous stomatitis revisited; clinical features, associations, and new association with infant feeding practices?. J Oral Pathol Med. 2007;36:615-20
- 5. Porter S, Scully C. Aphthous ulcers (recurrent). Clin Evid. 2005;13:1687-94.
- 6. Gatta L, Vakil N, Vaira D, Scarpignato C. Global eradication rates for Helicobacter pylori infection: systematic review and meta-analysis of sequential therapy. BMJ. 2013;347:f4587.
- 7. Chapman MS, Cimis RJ, Baughman RD. Lack of association between aphthous ulcers and Helicobacter pylori. Arch Dermatol. 1998;134:1634-5.
- 8. Riggio MP, Lennon A, Wray D. Detection of Helicobacter pylori DNA in recurrent aphthous stomatitis tissue by PCR. J Oral Pathol Med. 2000;29:507-13.
- 9. Elsheikh MN, Mahfouz ME. Prevalence of Helicobacter pylori DNA in recurrent aphthous ulcerations in mucosa-associated lymphoid tissues of the pharynx. Arch Otolaryngol Head Neck Surg. 2005;131:804-8.
- 10. Mravak-Stipetic M, Gall-Troselj K, Lukac J, Kusic Z, Pavelic K, Pavelic J. Detection of Helicobacter pylori in various oral lesions by nested polymerase chain reaction (PCR). J Oral Pathol Med. 1998;27:1-3.
- 11. Birek C, Grandhi R, McNeill K, Singer D, Ficarra G, Bowden G. Detection of Helicobacter pylori in oral aphthous ulcers. J Oral Pathol Med. 1999;28:197-203.
- 12. Shimoyama T, Horie N, Kato T, Kaneko T, Komiyama K. Helicobacter pylori in oral ulcerations. J Oral Sci. 2000;42:225-9.
- 13. Victoria JM, Kalapothakis E, Silva JF, Gomez RS. Helicobacter pylori DNA in recurrent aphthous stomatitis. J Oral Pathol Med. 2003;32:219-23.
- 14. Iamaroon A, Chaimano S, Linpisarn S, Pongsiriwet S, Phorn-phutkul K. Detection of Helicobacter pylori in recurrent aphthous ulceration by nested PCR. J Oral Sci. 2003;45:107-10.
- 15. Fritscher AM, Cherubini K, Chies J, Dias AC. Association between Helicobacter pylori and recurrent aphthous stomatitis in children and adolescents. J Oral Pathol Med. 2004;33:129-32.
- 16. Mansour-Ghanaei F, Asmar M, Bagherzadeh AH, Ekbataninezhad S. Helicobacter pylori infection in oral lesions of patients with recurrent aphthous stomatitis. Med Sci Monit 2005;11:CR576-9.
- 17. Porter SR, Barker GR, Scully C, Macfarlane G, Bain L. Serum IgG antibodies to Helicobacter pylori in patients with recurrent aphthous stomatitis and other oral disorders. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;83:325-8.

- 18. Maleki Z, Sayyari AA, Alavi K, Sayyari L, Baharvand M. A study of the relationship between Helicobacter pylori and recurrent aphthous stomatitis using a urea breath test. J Contemp Dent Pract. 2009;10:9-16.
- 19. Scully C, Porter S. Oral mucosal disease: recurrent aphthous stomatitis. Br J Oral Maxillofac Surg. 2008;46:198-206.
- 20. Song Q, Haller B, Schmid RM, Adler G, Bode G. Helicobacter pylori in dental plaque: a comparison of different PCR primer sets. Dig Dis Sci. 1999;44:479-84.
- 21. Silva DG, Tinoco EM, Rocha GA, Rocha AM, Guerra JB, Saraiva IE, et al. Helicobacter pylori transiently in the mouth may participate in the transmission of infection. Mem Inst Oswaldo Cruz. 2010:105:657-60
- 22. Totten PA, Fennell CL, Tenover FC, Wezenberg JM, Perine PL, Stam WE, et al. Campylobacter cinaedi (sp. nov.) and Campylobacter fennelliae (sp. nov.): two new Campylobacter species associated with enteric disease in homosexual men. J Infect Dis. 1985;151:131-9.
- 23. Karaca S, Seyhan M, Senol M, Harputluoglu MM, Ozcan A. The effect of gastric Helicobacter pylori eradication on recurrent aphthous stomatitis. Int J Dermatol. 2008;47:615-7.
- 24. Tas DA, Yakar T, Sakalli H, Serin E. Impact of Helicobacter pylori on the clinical course of recurrent aphthous stomatitis. J Oral Pathol Med. 2013;42:89-94.
- 25. Albanidou-Farmaki E, Giannoulis L, Markopoulos A, Fotiades S, Aggouridaki X, Farmakis K, et al. Outcome following treatment for Helicobacter pylori in patients with recurrent aphthous stomatitis. Oral Dis. 2005;11:22-6.
- 26. Afghari P, Khazaei S, Kazemi S, Savabi O, Keshteli AH, Adibi P. The role of Helicobacter pylori in the development of recurrent aphthous stomatitis: SEPAHAN systematic review no. 9. Dent Res J (Isfahan). 2011;8(Suppl 1):S2-8.
- 27. Li L, Gu H, Zhang G. Association between recurrent aphtous stomatitis and Helicobacter pylori infection: a meta-analysis. Clin Oral Investg. 2014;18:1553-60.
- 28. Adler I, Muiño A, Aguas S, Arada L, Dias M, Lence A, et al. Helicobacter Pylori and oral pathology: Relathionship with the Gastric Infection. World J Gastroenterol. 2014;20:9922-35.

Acknowledgements

CC Gomes and RS Gomez are research fellows at CNPq (National Counsil of Technological and Scientific Development), Brazil.