Chatzipetros E, Christopoulos P, Donta C, Tosios KI, Tsiambas E, Tsiourvas D, Kalogirou EM, Tsiklakis K. Application of nano-hydroxyapatite/chitosan scaffolds on rat calvarial critical-sized defects: A pilot study. Med Oral Patol Oral Cir Bucal. 2018 Sep 1;23 (5):e625-32.  

 

 

doi:10.4317/medoral.22455

http://dx.doi.org/doi:10.4317/medoral.22455

 

 

1. Buser D, Hoffman B, Bernard JP, Lussi A, Mettler D, Schenk RK. Evaluation of filling materials in membrane protected bone defects. A comparative histomorphometric study in the mandible of miniature pigs. Clin Oral Implants Res. 1998;9:137-50.
https://doi.org/10.1034/j.1600-0501.1998.090301.x
PMid:10530128

 

2. Olszta MJ, Cheng X, Jee SS, Kumar R, Kim YY, Kaufman MJ, et al. Bone structure and formation: A new perspective, Materials Science and Engineering R. 2007;58:77–116.
https://doi.org/10.1016/j.mser.2007.05.001

 

3. O'Brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14:88–95.
https://doi.org/10.1016/S1369-7021(11)70058-X

 

4. Vlierberghe SV, Dubruel P, Schacht E. Biopolymer-based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules. 2011;2:1387–408.
https://doi.org/10.1021/bm200083n
PMid:21388145

 

5. Di Martino A, Sittinger M, Risbud MV. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials. 2005;26:5983–90.
https://doi.org/10.1016/j.biomaterials.2005.03.016
PMid:15894370

 

6. Tigli RS, Karakecili A, Gumusderelioglu M. In vitro characterization of chitosan scaffolds: inuence of composition and deacetylation degree. J Mater Sci: Mater Med. 2007;18:1665–74.
https://doi.org/10.1007/s10856-007-3066-x
PMid:17483879

 

7. Cui W, Li X, Xie C, Chen J, Zou J, Zhou S, et al. Controllable growth of hydroxyapatite on electrospun poly(dl-lactide) bers grafted with chitosan as potential tissueengineeringscaffolds. Polymer. 2010;51:2320–8.
https://doi.org/10.1016/j.polymer.2010.03.037

 

8. Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods. J Biomed Mater Res. 2002;62:600–12.
https://doi.org/10.1002/jbm.10280
PMid:12221709

 

9. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–28.
https://doi.org/10.1111/j.1151-2916.1998.tb02540.x

 

10. Blaker JJ, Gough JE, Maquet V, Notingher I, Boccaccini AR. In vitro evaluation of novel bioactive composites based on Bioglass-lledpolylactide foams for bone tissue engineering scaffolds. J Biomed Mater Res. 2003;67A:1401–11.
https://doi.org/10.1002/jbm.a.20055
PMid:14624528

 

11. Castro F, Kuhn S, Jensen K, Ferreira A, Rocha F, Vicente A et al. Continuous-ow Precipitation of hydroxyapatite in ultrasonic Microsystems. ChemEng J 2013;215:979–87.
https://doi.org/10.1016/j.cej.2012.11.014

 

12. Kong L, Gao Y, Lu G, Gong Y, Zhao N, Zhang X. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polymer J. 2006;42:3171–9.
https://doi.org/10.1016/j.eurpolymj.2006.08.009

 

13. Kashiwazaki H, Kishiya Y, Matsuda A, Yamaguchi K, Iizuka T, Tanaka J et al. Fabrication of porous chitosan/hydroxyapatite nanocomposites: their mechanical and biological properties. BioMed Mater Eng. 2009;19:133–40.
PMid:19581706

 

14. Thein-Han WW, Misra RDK. Three-dimensional chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. JOM J Miner Metals Mater Soc. 2009;61:41–4.
https://doi.org/10.1007/s11837-009-0131-6

 

15. Lee JS, Baek SD, Venkatesan J, Bhatnagar I, Chang HK, Kim HT et al. In vivo study of chitosan-natural nano hydroxyapatite scaffolds. Int J BiolMacromol. 2014;67:360–6.
https://doi.org/10.1016/j.ijbiomac.2014.03.053
PMid:24705167

 

16. He Y, Dong Y, Cui F, Chen X, Lin R. Ectopic Osteogenesis and Scaffold Biodegradation of Nano-Hydroxyapatite-Chitosan in a Rat Model. PLoS ONE. 2015;10:1-15.
https://doi.org/10.1371/journal.pone.0135366

 

17. Tsiourvas D, Sapalidis A, Papadopoulos T. Hydroxyapatite/chitosan-based porous three-dimensional scaffolds with complex geometries. Mater Today. 2016;7:59-66.
https://doi.org/10.1016/j.mtcomm.2016.03.006

 

18. Gomes PS, Fernandes MH. Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim.2011;45:14-24.
https://doi.org/10.1258/la.2010.010085
PMid:21156759

 

19. Tsiourvas D, Tsetsekou A, Kammenou MI, Boukos N. Controlling the formation of hydroxyapatite nanorods with dendrimers. J Am Ceram Soc. 2011;94:2023–9.
https://doi.org/10.1111/j.1551-2916.2010.04342.x

 

20. Kuo YC, Tsai YT. Inverted Colloidal Crystal Scaffolds for Uniform Cartilage Regeneration, Biomacromolecules. 2010;11:731–9.
https://doi.org/10.1021/bm901312x
PMid:20158195

 

21. Ghiacci G, Graiani G, Ravanetti F, Lumetti S, Manfredi E, Galli C, et al. "Over-inlay" block graft and differential morphometry: a novel block graft model to study bone regeneration and host-to-graft interfaces in rats. J Periodontal Implant Sci. 2016;46:220-3.
https://doi.org/10.5051/jpis.2016.46.4.220
PMid:27588212 PMCid:PMC5005810

 

22. Kim RW, Kim JH, Moon SY. Effect of hydroxyapatite on critical-sized defect. Maxillofacial Plastic and Reconstructive Surgery. 2016;38:1-6.
https://doi.org/10.1186/s40902-016-0072-2
PMid:27441185 PMCid:PMC4932121

 

23. Kim JY, Yang BE, Ahn JH, Park SO, Shim HW. Comparable efficacy of silk fibroin with the collagen membranes for guided bone regeneration in rat calvarial defects. J AdvProsthodont. 2014;6:539-46.
https://doi.org/10.4047/jap.2014.6.6.539

 

24. Donos N, Dereka X, Mardas N. Experimental models for guided bone regeneration in healthy and medically compromised conditions. Periodontology 2000.2015;68:99-121.
https://doi.org/10.1111/prd.12077
PMid:25867982

 

25. Gao R, Watson M, Callon KE, Tuari D, Dray M, Naot D, et al. Local application of lactoferrin promotes bone regeneration in a rat critical-sized calvarial defect model as demonstrated by micro-CT and histological analysis. J Tissue Eng Regen Med.2018;12:620-6.
https://doi.org/10.1002/term.2348
PMid:27860377 PMCid:PMC5811776

 

26. Vajgel A, Mardas N, Farias BC, Petrie A, Cimoes R, Donos N. A systematic review on the critical size defect model. Clin Oral Impl Res. 2014;25:879–93.
https://doi.org/10.1111/clr.12194
PMid:23742162

 

27. Al-Kattan R, Retzepi M, Calciolari E, Donos N. Microarray gene expression during early healing of GBR-treated calvarial critical size defects. Clin Oral Impl Res. 2016;00:1-10.

 

28. Zhang H, Mao X, Du Z, Jiang W, Han X, Zhao D, et al. Three dimensional printed macroporouspolylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model. SciTechnolAdv Mater.2016;17:136-48.
https://doi.org/10.1080/14686996.2016.1145532
PMid:27877865 PMCid:PMC5101962

 

29. de Santana WM, de Sousa DN, Ferreira VM, Duarte WR. Simvastatin and biphasic calcium phosphate affects bone formation in critical-sized rat calvarial defects. Acta Cir Bras. 2016;31:300-7.
https://doi.org/10.1590/S0102-865020160050000002
PMid:27275850

 

30. Mukherjee DP, Tunkle AS, Roberts RA, Clavenna A, Rogers S, Smith D. An Animal Evaluation of a Paste of Chitosan Glutamate and Hydroxyapatite as a Synthetic Bone Graft Material Biomater. 2003;67:603-9.

 

31. Lohmann P, Willuweit A, Neffe AT, Geisler S, Gebauer TP, Beer S, et al. Bone regeneration induced by a 3D architectured hydrogel in a rat critical-size calvarial defect. Biomaterials. 2017;113:158-69.
https://doi.org/10.1016/j.biomaterials.2016.10.039
PMid:27815999

 

32. Townsend JM, Dennis SC, Whitlow J, Feng Y, Wang J, Andrews B, et al. Colloidal Gels with Extracellular Matrix Particles and Growth Factors for Bone Regeneration in Critical Size Rat Calvarial Defects. AAPS J. 2017;19:703-11.
https://doi.org/10.1208/s12248-017-0045-0
PMid:28138909

 

33. Pryor ME, Polimeni G, Koo KT, Hartman MJ, Gross H, April M, et al. Analysis of rat calvaria defects implanted with a platelet-rich plasma preparation: histologic and histometric observations. J ClinPeriodontol.2005;32:966-72.
https://doi.org/10.1111/j.1600-051X.2005.00772.x

 

34. Park JW, Bae SR, Suh JY, Lee DH, Kim SH, Kim H, et al. Evaluation of bone healing with eggshell-derived bone graft substitutes in rat calvaria: a pilot study. J Biomed Mater Res A. 2008;87:203-14.
https://doi.org/10.1002/jbm.a.31768
PMid:18085653

 

35. Lee JS, Baek SD, Venkatesan J, Bhatnagar I, Chang HK, Kim HT, et al. In vivo study of chitosan-natural nano hydroxyapatite scaffolds. Int J BiolMacromol.2014;67:360-6.
https://doi.org/10.1016/j.ijbiomac.2014.03.053
PMid:24705167

 

36. Johari B, Ahmadzadehzarajabad M, Azami M, Kazemi M, Soleimani M, Kargozar S, et al. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds. J Biomed Mater Res. 2016;104:1770-8.
https://doi.org/10.1002/jbm.a.35710
PMid:26990815

 

37. Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Porethroat size and connectivity determine bone and tissue ingrowth into porousimplants: three-dimensional micro-CT based structural analyses of porousbioactivetitanium implants. Biomaterials. 2006;27:5892-900.
https://doi.org/10.1016/j.biomaterials.2006.08.013
PMid:16945409

 

38. Bobyn JD, Pilliar RM, Cameron HU, Weatherly GC. The optimum pore sizefor the fixation of porous-surfaced metal implants by the ingrowth of bone. ClinOrthopRelat Res. 1980;150:263-70.
PMid:7428231

 

39. Cook SD, Walsh KA, Haddad RJ.Jr. Interface mechanics and bone growthinto porous Co–Cr–Mo alloy implants, ClinOrthopRelat Res. 1985;193:271-80.
PMid:3971631

 

40. Whang K, Healy KE, Elenz DR, Nam EK, Tsai DC, Thomas CH, et al. Engineering bone regeneration withbioabsorbable scaffolds with novel microarchitecture. Tissue Eng. 1999;5:35-51.
https://doi.org/10.1089/ten.1999.5.35
PMid:10207188

 

41. Liao F, Chen Y, Li Z, Wang Y, Shi B, Gong Z, et al. A novel bioactivethree-dimensional b-tricalcium phosphate/chitosan scaffold for periodontaltissue engineering. J Mater Sci: Mater Med. 2010;21:489-96.
https://doi.org/10.1007/s10856-009-3931-x
PMid:19908128