Sánchez-Garcés MÁ, Camps-Font O, Escoda-Francolí J, Muñoz-Guzón F, Toledano-Serrabona J, Gay-Escoda C. Short time guided bone regeneration using beta-tricalcium phosphate with and without fibronectin – An experimental study in rats. Med Oral Patol Oral Cir Bucal. 2020 Jul 1;25 (4):e532-40.


doi:10.4317/medoral.23564

https://dx.doi.org/doi:10.4317/medoral.23564


1. Sakkas A, Wilde F, Heufelder M, Winter K, Schramm A. Autogenous bone grafts in oral implantology-is it still a "gold standard"? A consecutive review of 279 patients with 456 clinical procedures. Int J Implant Dent. 2017;3:23.

https://doi.org/10.1186/s40729-017-0084-4

PMid:28573552 PMCid:PMC5453915

2. Bigham-Sadegh A, Oryan A. Selection of animal models for pre-clinical strategies in evaluating the fracture healing, bone graft substitutes and bone tissue regeneration and engineering. Connect Tissue Res. 2015;56:175-94.

https://doi.org/10.3109/03008207.2015.1027341

PMid:25803622 

3. Clokie CML, Moghadam H, Jackson MT, Sandor GKB. Closure of critical sized defects with allogenic and alloplastic bone substitutes. J Craniofac Surg. 2002;13:111-3.

https://doi.org/10.1097/00001665-200201000-00026

PMid:11887007 

4. Wang Z, Guo Z, Bai H, Li J, Li X, Chen G, et al. Clinical evaluation of beta-TCP in the treatment of lacunar bone defects: A prospective, randomized controlled study. Mater Sci Eng C Mater Biol Appl. 2013;33:1894-9.

https://doi.org/10.1016/j.msec.2012.12.041

PMid:23498210 

5. Miron RJ, Zhang YF. Osteoinduction: A review of old concepts with new standards. J Dent Res. 2012;91:736-44.

https://doi.org/10.1177/0022034511435260

PMid:22318372 

6. Homaeigohar SS, Shokrgozar MA, Khavandi A, Sadi AY. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: A survey using human osteoblast and fibroblast bone cells. J Biomed Mater Res A. 2008;84:491-9.

https://doi.org/10.1002/jbm.a.31473

PMid:17618499 

7. Lee DSH, Pai Y, Chang S, Kim DH. Microstructure, physical properties, and bone regeneration effect of the nano-sized beta-tricalcium phosphate granules. Mater Sci Eng C Mater Biol Appl. 2016;58:971-6.

https://doi.org/10.1016/j.msec.2015.09.047

PMid:26478393 

8. Rojbani H, Nyan M, Ohya K, Kasugai S. Evaluation of the osteoconductivity of alpha-tricalcium phosphate, beta-tricalcium phosphate, and hydroxyapatite combined with or without simvastatin in rat calvarial defect. J Biomed Mater Res A. 2011;98:488-98.

https://doi.org/10.1002/jbm.a.33117

PMid:21681941 

9. Suenaga H, Furukawa KS, Suzuki Y, Takato T, Ushida T. Bone regeneration in calvarial defects in a rat model by implantation of human bone marrow-derived mesenchymal stromal cell spheroids. J Mater Sci Mater Med. 2015;26:254.

https://doi.org/10.1007/s10856-015-5591-3

PMid:26449444 PMCid:PMC4598349

10. Gomes PS, Fernandes MH. Rodent models in bone-related research: The relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim. 2011;45:14-24.

https://doi.org/10.1258/la.2010.010085

PMid:21156759 

11. Li J, Hong J, Zheng Q, Guo X, Lan S, Cui F, et al. Repair of rat cranial bone defects with nHAC/PLLA and BMP-2-related peptide or rhBMP-2. J Orthop Res. 2011;29:1745-52.

https://doi.org/10.1002/jor.21439

PMid:21500252 

12. Luvizuto ER, Tangl S, Zanoni G, Okamoto T, Sonoda CK, Gruber R, et al. The effect of BMP-2 on the osteoconductive properties of beta-tricalcium phosphate in rat calvaria defects. Biomaterials. 2011;32:3855-61.

https://doi.org/10.1016/j.biomaterials.2011.01.076

PMid:21376389 

13. Rodriguez R, Kondo H, Nyan M, Hao J, Miyahara T, Ohya K, et al. Implantation of green tea catechin alpha-tricalcium phosphate combination enhances bone repair in rat skull defects. J Biomed Mater Res B Appl Biomater. 2011;98:263-71.

https://doi.org/10.1002/jbm.b.31848

PMid:21591251 

14. Annibali S, Bellavia D, Ottolenghi L, Cicconetti A, Cristalli MP, Quaranta R, et al. Micro-CT and PET analysis of bone regeneration induced by biodegradable scaffolds as carriers for dental pulp stem cells in a rat model of calvarial "critical size" defect: Preliminary data. J Biomed Mater Res B Appl Biomater. 2014;102:815-25.

https://doi.org/10.1002/jbm.b.33064

PMid:24142538 

15. Annibali S, Cicconetti A, Cristalli MP, Giordano G, Trisi P, Pilloni A, et al. A comparative morphometric analysis of biodegradable scaffolds as carriers for dental pulp and periosteal stem cells in a model of bone regeneration. J Craniofac Surg. 2013;24:866-71.

https://doi.org/10.1097/SCS.0b013e31827ca530

PMid:23714898 

16. Ball MD, O'Connor D, Pandit A. Use of tissue transglutaminase and fibronectin to influence osteoblast responses to tricalcium phosphate scaffolds. J Mater Sci Mater Med. 2009;20:113-22.

https://doi.org/10.1007/s10856-008-3547-6

PMid:18704653 

17. Fernandez MS, Arias JI, Martinez MJ, Saenz L, Neira-Carrillo A, Yazdani-Pedram M, et al. Evaluation of a multilayered chitosan-hydroxy-apatite porous composite enriched with fibronectin or an in vitro-generated bone-like extracellular matrix on proliferation and diferentiation of osteoblasts. J Tissue Eng Regen Med. 2012;6:497-504.

https://doi.org/10.1002/term.455

PMid:21812117 

18. Park JM, Koak JY, Jang JH, Han CH, Kim SK, Heo SJ. Osseointegration of anodized titanium implants coated with fibroblast growth factor-fibronectin (FGF-FN) fusion protein. Int J Oral Maxillofac Implants. 2006;21:859-66.

PMid:17190295

19. Alvira-González J, Sánchez-Garcés MÀ, Barbany-Cairó JR, Del Pozo MR, Sánchez CM, Gay-Escoda C. Assessment of bone regeneration using adipose-derived stem cells in critical-size alveolar ridge defects: An experimental study in a dog model. Int J Oral Maxillofac Implant. 2016;31:196-203.

https://doi.org/10.11607/jomi.4190

PMid:26800179 

20. Sánchez-Garcés MÀ, Alvira-González J, Sánchez CM, Barbany-Cairó JR, Del Pozo MR, Gay-Escoda C. Bone regeneration using adipose-derived stem cells with fibronectin in dehiscence-type defects associated with dental implants: An experimental study in a dog model. Int J Oral Maxillofac Implant. 2017;32:97-106.

https://doi.org/10.11607/jomi.5169

PMid:28291861 

21. Escoda-Francolí J, Sánchez-Garcés MÁ, Gimeno-Sandig Á, Muñoz-Guzón F, Barbany-Cairó JR, Badiella-Busquets L, et al. Guided bone regeneration using beta-tricalcium phosphate with and without fibronectin-An experimental study in rats. Clin Oral Implants Res. 2018;29:1038-49.

https://doi.org/10.1111/clr.13370

PMid:30267433 

22. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8:1000412.

https://doi.org/10.1371/journal.pbio.1000412

PMid:20613859 PMCid:PMC2893951

23. Benic GI, Thoma DS, Munoz F, Sanz-Martin I, Jung RE, Hammerle CHF. Guided bone regeneration of periimplant defects with particulated and block xenogenic bone substitutes. Clin Oral Implants Res. 2016;27:567-76.

https://doi.org/10.1111/clr.12625

PMid:26073212 

24. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, et al. Standardized nomenclature, symbols, and units for bone histomorphometry: A 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res. 2013;28:2-17.

https://doi.org/10.1002/jbmr.1805

PMid:23197339 PMCid:PMC3672237

25. Calciolari E, Ravanetti F, Strange A, Mardas N, Bozec L, Cacchioli A, et al. Degradation pattern of porcine collagen membrane in an in vivo model of guided bone regeneration. J Periodontal Res. 2018;53:430-9.

https://doi.org/10.1111/jre.12530

PMid:29446096 

26. Ramalingam S, Al-Rasheed A, ArRejaie A, Nooh N, Al-Kindi M, Al-Hezaimi K. Guided bone regeneration in standardized calvarial defects using beta-tricalcium phosphate and collagen membrane: A real-time in vivo micro-computed tomographic experiment in rats. Odontology. 2016;104:199-210.

https://doi.org/10.1007/s10266-015-0211-8

PMid:26156449 

27. Kostopoulos L, Karring T. Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer. Clin Oral Implants Res. 1994;5:66-74.

https://doi.org/10.1034/j.1600-0501.1994.050202.x

PMid:7918911 

28. Agrali OB, Yildirim S, Ozener HO, Köse KN, Ozbeyli D, Soluk-Tekkesin M, et al. Evaluation of the effectiveness of esterified hyaluronic acid fibers on bone regeneration in rat calvarial defects. Biomed Res Int. 2018;2018:3874131.

https://doi.org/10.1155/2018/3874131

PMid:30050929 PMCid:PMC6046155

29. Bae E Bin, Park KH, Shim JH, Chung HY, Choi JW, Lee JJ, et al. Efficacy of rhBMP-2 loaded PCL/ β -TCP/bdECM scaffold fabricated by 3D printing technology on bone regeneration. Biomed Res Int. 2018;2018:2876135.

https://doi.org/10.1155/2018/2876135

PMid:29682530 PMCid:PMC5848108

30. Kim RW, Kim JH, Moon SY. Effect of hydroxyapatite on critical-sized defect. Maxillofac Plast Reconstr Surg. 2016;38:26.

https://doi.org/10.1186/s40902-016-0072-2

PMid:27441185 PMCid:PMC4932121

31. Abou Fadel R, Samarani R, Chakar C. Guided bone regeneration in calvarial critical size bony defect using a double-layer resorbable collagen membrane covering a xenograft: A histological and histomorphometric study in rats. Oral Maxillofac Surg. 2018;22:203-13.

https://doi.org/10.1007/s10006-018-0694-x

PMid:29654386 

32. Calvo-Guirado JL, Delgado-Ruiz RA, Ramirez-Fernandez MP, Mate-Sanchez JE, Ortiz-Ruiz A, Marcus A. Histomorphometric and mineral degradation study of Ossceram: A novel biphasic B-tricalcium phosphate in critical size defects in rabbits. Clin Oral Implants Res. 2012;23:667-75.

https://doi.org/10.1111/j.1600-0501.2011.02193.x

PMid:21492238 

33. Cho YD, Kim BS, Lee CS, Kim KH, Seol YJ, Lee YM, et al. Fibronectin-derived oligopeptide stimulates osteoblast differentiation through a bone morphogenic protein 2-like signaling pathway. J Periodontol. 2017;88:42-8.

https://doi.org/10.1902/jop.2016.160294

PMid:27620656 

34. Nyan M, Sato D, Kihara H, Machida T, Ohya K, Kasugai S. Effects of the combination with alpha-tricalcium phosphate and simvastatin on bone regeneration. Clin Oral Implants Res. 2009;20:280-7.

https://doi.org/10.1111/j.1600-0501.2008.01639.x

PMid:19397639 

35. Cochran DL, Oh TJ, Mills MP, Clem DS, McClain PK, Schallhorn RA, et al. A randomized clinical trial evaluating rh-FGF-2/β-TCP in periodontal defects. J Dent Res. 2016;95:523-30.

https://doi.org/10.1177/0022034516632497

PMid:26908630 

36. Donos N, Dereka X, Mardas N. Experimental models for guided bone regeneration in healthy and medically compromised conditions. Periodontol 2000. 2015;68:99-121.

https://doi.org/10.1111/prd.12077

PMid:25867982 

37. Donos N, Lang NP, Karoussis IK, Bosshardt D, Tonetti M, Kostopoulos L. Effect of GBR in combination with deproteinized bovine bone mineral and/or enamel matrix proteins on the healing of critical-size defects. Clin Oral Implants Res. 2004;15:101-11.

https://doi.org/10.1111/j.1600-0501.2004.00986.x

PMid:14731183 

38. Vajgel A, Mardas N, Farias BC, Petrie A, Cimoes R, Donos N. A systematic review on the critical size defect model. Clin Oral Implants Res. 2014;25:879-93.

https://doi.org/10.1111/clr.12194

PMid:23742162