Ferreira LM, Nascimento JP, Souza LL, Souza FT, Guimarães LD, Lopes MA, et al. Comparative analysis of language models in addressing syphilis-related queries. Med Oral Patol Oral Cir Bucal. 2025 Jul 1;30 (4):e551-60.


doi:10.4317/medoral.27092

https://dx.doi.org/doi:10.4317/medoral.27092


1. Antal GM, Lukehart SA, Meheus AZ. The endemic treponematoses. Microbes Infect. 2002;4:83-94.

https://doi.org/10.1016/S1286-4579(01)01513-1

PMid:11825779 

2. Smajs D, Norris SJ, Weinstock GM. Genetic diversity in Treponema pallidum: implications for pathogenesis, evolution, and molecular diagnostics of syphilis and yaws. Infect Genet Evol. 2012;12:191-202.

https://doi.org/10.1016/j.meegid.2011.12.001

PMid:22198325 PMCid:PMC3786143

3. Peeling RW, Mabey D, Kamb ML, Chen XS, Radolf JD, Benzaken AS, et al. Syphilis. Nat Rev Dis Primers. 2017;3:17073.

https://doi.org/10.1038/nrdp.2017.73

PMid:29022569 PMCid:PMC5809176

4. Yu W, You X, Luo W. Global, regional, and national burden of syphilis, 1990-2021, and predictions by Bayesian age-period-cohort analysis: a systematic analysis for the global burden of disease study 2021. Front Med (Lausanne). 2024;11:1448841.

https://doi.org/10.3389/fmed.2024.1448841

PMid:39211337 PMCid:PMC11357943

5. Peeling RW, Mabey D, Chen XS, Garcia PJ. Syphilis. Lancet. 2023;402:336-46.

https://doi.org/10.1016/S0140-6736(22)02348-0

PMid:37481272 

6. Hook EW. Syphilis. Lancet. 2017;389:1550-7.

https://doi.org/10.1016/S0140-6736(16)32411-4

PMid:27993382 

7. Jankowska L, Adamski Z, Polańska A, Bowszyc-Dmochowska M, Plagens-Rotman K, Merks P, et al. Challenges in the diagnosis of tertiary syphilis: case report with literature review. Int J Environ Res Public Health. 2022;19:16992.

https://doi.org/10.3390/ijerph192416992

PMid:36554872 PMCid:PMC9778711

8. Chow F. Update in: Neurosyphilis. Continuum (Minneap Minn). 2021;27:1492-3.

https://doi.org/10.1212/CON.0000000000001086

PMid:34618772 

9. Thean L, Moore A, Nourse C. New trends in congenital syphilis: epidemiology, testing in pregnancy, and management. Curr Opin Infect Dis. 2022;35:452-460.

https://doi.org/10.1097/QCO.0000000000000875

PMid:36066379 

10. Hamill MM, Ghanem KG, Tuddenham S. State-of-the-art review: neurosyphilis. Clin Infect Dis. 2024;78:e57-68.

https://doi.org/10.1093/cid/ciad437

PMid:37593890 

11. Albuquerque G, Fernandes F, Barbalho IM, Barros DM, Morais PS, Morais AH, et al. Computational methods applied to syphilis: where are we, and where are we going? Front Public Health. 2023;11:1201725.

https://doi.org/10.3389/fpubh.2023.1201725

PMid:37680278 PMCid:PMC10481400

12. De Souza LL, Fonseca FP, Araujo ALD, Lopes MA, Vargas PA, Khurram AS, et al. Machine learning for detection and classification of oral potentially malignant disorders: a conceptual review. J Oral Pathol Med. 2023;52:197-205.

https://doi.org/10.1111/jop.13414

PMid:36792771 

13. Theodosiou AA, Read RC. Artificial intelligence, machine learning, and deep learning: potential resources for the infection clinician. J Infect. 2023;87:287-294.

https://doi.org/10.1016/j.jinf.2023.07.006

PMid:37468046 

14. Soe NN, Yu Z, Latt PM, Lee D, Ong JJ, Ge Z, et al. Evaluation of artificial intelligence-powered screening for sexually transmitted infections-related skin lesions using clinical images and metadata. BMC Med. 2024;22:296.

https://doi.org/10.1186/s12916-024-03512-x

PMid:39020355 PMCid:PMC11256573

15. Omiye JA, Gui H, Rezaei SJ, Zou J, Daneshjou R. Large Language Models in Medicine: The Potentials and Pitfalls: A Narrative Review. Ann Intern Med. 2024;177:210-20.

https://doi.org/10.7326/M23-2772

PMid:38285984 

16. Heo MS, Kim JE, Hwang JJ, Han SS, Kim JS, Yi WJ, et al. Artificial intelligence in oral and maxillofacial radiology: what is currently possible? Dentomaxillofac Radiol. 2021;50:20200375.

https://doi.org/10.1259/dmfr.20200375

PMid:33197209 PMCid:PMC7923066

17. Ossowska A, Kusiak A, Świetlik D. Artificial intelligence in dentistry-narrative review. Int J Environ Res Public Health. 2022;19:3449.

https://doi.org/10.3390/ijerph19063449

PMid:35329136 PMCid:PMC8950565

18. Lee ASD, Cody SL. The stigma of sexually transmitted infections. Nurs Clin North Am. 2020;55:295-305.

https://doi.org/10.1016/j.cnur.2020.05.002

PMid:32762851 

19. Babayiğit O, Eroglu ZT, Sen DO, Ucan YF. Potential use of ChatGPT for patient information in periodontology: a descriptive pilot study. Cureus. 2023;15:e48518.

https://doi.org/10.7759/cureus.48518

PMid:38073946 PMCid:PMC10708896

20. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159-174.

https://doi.org/10.2307/2529310

PMid:843571 

21. De Souza LL, Lopes MA, Santos-Silva AR, Vargas PA. The potential of ChatGPT in oral medicine: a new era of patient care? Oral Surg Oral Med Oral Pathol Oral Radiol. 2024;137:1-2.

https://doi.org/10.1016/j.oooo.2023.09.010

PMid:37968192 

22. Kaewboonlert N, Poontananggul J, Pongsuwan N, Bhakdisongkhram G. Factors Associated with the Accuracy of Large Language Models in Basic Medical Science Examinations: Cross-Sectional Study. JMIR Med Educ. 2025;11:e58898.

https://doi.org/10.2196/58898

PMid:39846415 PMCid:PMC11745146

23. Adams LC, Truhn D, Busch F, Dorfner F, Nawabi J, Makowski MR, et al. Llama 3 challenges proprietary state-of-the-art large language models in radiology board-style examination questions. Radiology. 2024;312:e241191.

https://doi.org/10.1148/radiol.241191

PMid:39136566 

24. De Souza LL, Santos-Silva AR, Hagag A, Alzahem A, Vargas PA, Lopes MA. Evaluating AI models in head and neck cancer research: the use of NCI data by ChatGPT 3.5, ChatGPT 4.0, Google Bard, and Bing Chat. Oral Surg Oral Med Oral Pathol Oral Radiol. 2024;138:453-7.

https://doi.org/10.1016/j.oooo.2024.05.012

PMid:38910103 

25. Ömür AD, Erdemir İ, Kara F, Shermatov N, Odacioğlu M, İbişoğlu E, et al. Assessing the readability, reliability, and quality of artificial intelligence chatbot responses to the 100 most searched queries about cardiopulmonary resuscitation: An observational study. Medicine (Baltimore). 2024;103:e38352.

https://doi.org/10.1097/MD.0000000000038352

PMid:39259094 PMCid:PMC11142831

26. Tao BK, Hua N, Milkovich J, Micieli JA. ChatGPT-3.5 and Bing Chat in ophthalmology: an updated evaluation of performance, readability, and informative sources. Eye (Lond). 2024;38:1897-902.

https://doi.org/10.1038/s41433-024-03037-w

PMid:38509182 

27. Ermis S, Özal E, Karapapak M, Kumantaş E, Özal SA. Assessing the Responses of Large Language Models (ChatGPT-4, Claude 3, Gemini, and Microsoft Copilot) to Frequently Asked Questions in Retinopathy of Prematurity: A Study on Readability and Appropriateness. J Pediatr Ophthalmol Strabismus. 2025;62:84-95.

https://doi.org/10.3928/01913913-20240911-05

PMid:39465590 

28. Quinn M, Milner JD, Schmitt P, Morrissey P, Lemme N, Marcaccio S, et al. Artificial intelligence large language models address anterior cruciate ligament reconstruction: superior clarity and completeness by Gemini compared to ChatGPT-4 in response to American Academy of Orthopedic Surgeons clinical practice guidelines. Arthroscopy. 2024;24:00736-9.

https://doi.org/10.1016/j.arthro.2024.09.020

PMid:39313138 

29. Pressman SM, Borna S, Gomez-Cabello CA, Haider SA, Haider C, Forte AJ. AI and Ethics: A Systematic Review of the Ethical Considerations of Large Language Model Use in Surgery Research. Healthcare (Basel). 2024;12:825.

https://doi.org/10.3390/healthcare12080825

PMid:38667587 PMCid:PMC11050155