Agbulut N, Unlu M. Artificial intelligence in maxillofacial trauma: expert ally or unreliable assistant?. Med Oral Patol Oral Cir Bucal. 2025 Sep 1;30 (5):e751-7.


doi:10.4317/medoral.27229

https://dx.doi.org/doi:10.4317/medoral.27229


1. Pham TD, Holmes SB, Coulthard P. A review on artificial intelligence for the diagnosis of fractures in facial trauma imaging. Front Artif Intell. 2024;6:1278529.

https://doi.org/10.3389/frai.2023.1278529

PMid:38249794 PMCid:PMC10797131

2. Cross JL, Choma MA, Onofrey JA. Bias in medical AI: Implications for clinical decision-making. PLOS Digit Health. 2024;3:e0000651.

https://doi.org/10.1371/journal.pdig.0000651

PMid:39509461 PMCid:PMC11542778

3. Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, et al. Fairness of artificial intelligence in healthcare: review and recommendations. Jpn J Radiol. 2024;42:3-15.

https://doi.org/10.1007/s11604-023-01474-3

PMid:37540463 PMCid:PMC10764412

4. Tan S, Xin X, Wu D. ChatGPT in medicine: prospects and challenges: a review article. Int J Surg. 2024;110:3701.

https://doi.org/10.1097/JS9.0000000000001312

PMid:38502861 PMCid:PMC11175750

5. Lee PY, Salim H, Abdullah A, Teo CH. Use of ChatGPT in medical research and scientific writing. Malays Fam Physician. 2023;18:58.

https://doi.org/10.51866/cm0006

PMid:37814667 PMCid:PMC10560470

6. Miragall MF, Knoedler S, Kauke-Navarro M, Saadoun R, Grabenhorst A, Grill FD, et al. Face the Future-Artificial Intelligence in Oral and Maxillofacial Surgery. J Clin Med. 2023;12:6843.

https://doi.org/10.3390/jcm12216843

PMid:37959310 PMCid:PMC10649053

7. Abubaker AO, Ferneini EM. Oral and Maxillofacial Surgery Secrets. 4th edition. Elsevier Health Sciences; 2025.

PMid:

8. Xie Y, Seth I, Hunter-Smith DJ, Rozen WM, Ross R, Lee M. Aesthetic Surgery Advice and Counseling from Artificial Intelligence: A Rhinoplasty Consultation with ChatGPT. Aesth Plast Surg. 2023;47:1985-93.

https://doi.org/10.1007/s00266-023-03338-7

PMid:37095384 PMCid:PMC10581928

9. Freire Y, Santamaría Laorden A, Orejas Pérez J, Gómez Sánchez M, Díaz-Flores García V, Suárez A. ChatGPT performance in prosthodontics: Assessment of accuracy and repeatability in answer generation. J Prosthet Dent. 2024;131:659.e1-6.

https://doi.org/10.1016/j.prosdent.2024.01.018

PMid:38310063 

10. Trizano-Hermosilla I, Alvarado JM. Best Alternatives to Cronbach's Alpha Reliability in Realistic Conditions: Congeneric and Asymmetrical Measurements. Front Psychol. 2016;7:769.

https://doi.org/10.3389/fpsyg.2016.00769

PMid:27303333 PMCid:PMC4880791

11. Landis JR, Koch GG. The Measurement of Observer Agreement for Categorical Data. Biometrics. 1977;33:159-74.

https://doi.org/10.2307/2529310

PMid:843571

12. Koo TK, Li MY. A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. J Chiropr Med. 2016;15:155-63.

https://doi.org/10.1016/j.jcm.2016.02.012

PMid:27330520 PMCid:PMC4913118

13. Hadianfard H, Kiani B, Azizzadeh Herozi M, Mohajelin F, Mitchell JT. Health-related quality of life in Iranian adolescents: a psychometric evaluation of the self-report form of the PedsQL 4.0 and an investigation of gender and age differences. Health Qual Life Outcomes. 2021;19:108.

https://doi.org/10.1186/s12955-021-01742-8

PMid:33771186 PMCid:PMC8004408

14. Morishita M, Fukuda H, Muraoka K, Nakamura T, Hayashi M, Yoshioka I, et al. Evaluating GPT-4V's performance in the Japanese national dental examination: A challenge explored. J Dent Sci. 2024;19:1595-600.

https://doi.org/10.1016/j.jds.2023.12.007

PMid:39035269 PMCid:PMC11259620

15. Tomo S, Lechien JR, Bueno HS, Cantieri-Debortoli DF, Simonato LE. Accuracy and consistency of ChatGPT-3.5 and − 4 in providing differential diagnoses in oral and maxillofacial diseases: a comparative diagnostic performance analysis. Clin Oral Investig. 2024;28:544.

https://doi.org/10.1007/s00784-024-05939-1

PMid:39316174 

16. Revercomb L, Patel AM, Choudhry HS, Filimonov A. Performance of ChatGPT in Otolaryngology knowledge assessment. Am J Otolaryngol. 2024;45:104082.

https://doi.org/10.1016/j.amjoto.2023.104082

PMid:37862879 

17. Suárez A, Jiménez J, Pedro ML de, Andreu-Vázquez C, García VDF, Sánchez MG, et al. Beyond the Scalpel: Assessing ChatGPT's potential as an auxiliary intelligent virtual assistant in oral surgery. Comput Struct Biotechnol J. 2024;24:46-52.

https://doi.org/10.1016/j.csbj.2023.11.058

PMid:38162955 PMCid:PMC10755495

18. Sawamura S, Bito T, Ando T, Masuda K, Kameyama S, Ishida H. Evaluation of the accuracy of ChatGPT's responses to and references for clinical questions in physical therapy. J Phys Ther Sci. 2024;36:234-9.

https://doi.org/10.1589/jpts.36.234

PMid:38694019 PMCid:PMC11060764

19. Wang L, Chen X, Deng X, Wen H, You M, Liu W, et al. Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs. npj Digit Med. 2024;7:1-9.

https://doi.org/10.1038/s41746-024-01029-4

PMid:38378899 PMCid:PMC10879172

20. Goh E, Gallo R, Hom J, Strong E, Weng Y, Kerman H, et al. Large Language Model Influence on Diagnostic Reasoning: A Randomized Clinical Trial. JAMA Network Open. 2024;7:e2440969.

https://doi.org/10.1001/jamanetworkopen.2024.40969

PMid:39466245 PMCid:PMC11519755

21. Rokhshad R, Zhang P, Mohammad-Rahimi H, Pitchika V, Entezari N, Schwendicke F. Accuracy and consistency of chatbots versus clinicians for answering pediatric dentistry questions: A pilot study. J Dent. 2024;144:104938.

https://doi.org/10.1016/j.jdent.2024.104938

PMid:38499280 

22. Erdat EC, Kavak EE. Benchmarking LLM chatbots' oncological knowledge with the Turkish Society of Medical Oncology's annual board examination questions. BMC Cancer. 2025;25:197.

https://doi.org/10.1186/s12885-025-13596-0

PMid:39905358 PMCid:PMC11792186

23. Hernández-Flores LA, López-Martínez JB, Rosales-de-la-Rosa JJ, Aillaud-De-Uriarte D, Contreras-Garduño S, Cortés-González R. Assessment of Challenging Oncologic Cases: A Comparative Analysis Between ChatGPT, Gemini, and a Multidisciplinary Tumor Board. J Surg Oncol. 2025.

https://doi.org/10.1002/jso.28121

PMid:39936586 

24. Frosolini A, Catarzi L, Benedetti S, Latini L, Chisci G, Franz L, et al. The Role of Large Language Models (LLMs) in Providing Triage for Maxillofacial Trauma Cases: A Preliminary Study. Diagnostics (Basel). 2024;14:839.

https://doi.org/10.3390/diagnostics14080839

PMid:38667484 PMCid:PMC11048758

25. Wang X, Ye H, Zhang S, Yang M, Wang X. Evaluation of the Performance of Three Large Language Models in Clinical Decision Support: A Comparative Study Based on Actual Cases. J Med Syst. 2025;49:23.

https://doi.org/10.1007/s10916-025-02152-9

PMid:39948214 

26. Reverberi C, Rigon T, Solari A, Hassan C, Cherubini P, Cherubini A. Experimental evidence of effective human-AI collaboration in medical decision-making. Sci Rep. 2022;12:14952.

https://doi.org/10.1038/s41598-022-18751-2

PMid:36056152 PMCid:PMC9440124

27. Hirosawa T, Suzuki T, Shiraishi T, Hayashi A, Fujii Y, Harada T, et al. Adapting Artificial Intelligence Concepts to Enhance Clinical Decision-Making: A Hybrid Intelligence Framework. Int J Gen Med. 2024;17:5417-22.

https://doi.org/10.2147/IJGM.S497753

PMid:39582919 PMCid:PMC11585294

28. Goh E, Bunning B, Khoong EC, Gallo RJ, Milstein A, Centola D, et al. Physician clinical decision modification and bias assessment in a randomized controlled trial of AI assistance. Commun Med (Lond). 2025;5:59.

https://doi.org/10.1038/s43856-025-00781-2

PMid:40038550 PMCid:PMC11880198

29. Lyell D, Coiera E. Automation bias and verification complexity: a systematic review. J Am Med Inform Assoc. 2017;24:423-31.

https://doi.org/10.1093/jamia/ocw105

PMid:27516495 PMCid:PMC7651899

30. Hatherley J, Kinderlerer A, Bjerring JC, Munch LA, Threlfall L. The FHJ debate: Will artificial intelligence replace clinical decision making within our lifetimes?. Future Healthc J. 2024;11:100178.

https://doi.org/10.1016/j.fhj.2024.100178

PMid:39371529 PMCid:PMC11452837