Bartolomé-Lechuga J, Hernando-Calzado L, Cobo-Vázquez CM, Sanz-Alonso J, López-Quiles J, Madrigal-Martínez-Pereda C. Tooth regeneration in animals. A systematic review. Med Oral Patol Oral Cir Bucal. 2025 Nov 1;30 (6):e821-9.


doi:10.4317/medoral.27269

https://dx.doi.org/doi:10.4317/medoral.27269


1. Zhang W, Yelick PC. Tooth Repair and Regeneration: Potential of Dental Stem Cells. Trends Mol Med. 2021;27:501-11.

https://doi.org/10.1016/j.molmed.2021.02.005

PMid:33781688 PMCid:PMC9907435

2. Kim R, Kaartinen V, Yamada KM. From snapshots to movies: Understanding early tooth development in four dimensions. Dev Dyn. 2017;246:442-50.

https://doi.org/10.1002/dvdy.24501

PMid:28324646 PMCid:PMC5426979

3. Square TA, Mackey EJ, Sundaram S, Weksler NC, Chen ZZ, Narayanan SN, et al. Modulation of tooth regeneration through opposing responses to Wnt and BMP signals in teleosts. Development. 2023;150:dev202168.

https://doi.org/10.1242/dev.202168

PMid:38059590 PMCid:PMC10730089

4. Li X, Li N, Chen K, Nagasawa S, Yoshizawa M, Kagami H. Around 90° contact angle of dish surface is a key factor in achieving spontaneous spheroid formation. Tissue Eng Part C Methods. 2018;24:578-84.

https://doi.org/10.1089/ten.tec.2018.0188

PMid:30234440 

5. Sasaki R, Aoki S, Yamato M, Uchiyama H, Okano T. Neurosphere generation from dental pulp of adult rat incisor. Eur J Neurosci. 2008;27:538-48.

https://doi.org/10.1111/j.1460-9568.2008.06026.x

PMid:18279307 

6. Xiao L, Tsutsui T. Characterization of human dental pulp cells-derived spheroids in serum-free medium: Stem cells in the core. J Cell Biochem. 2013;114:2624-36.

https://doi.org/10.1002/jcb.24610

PMid:23794488 

7. Yam GH, Teo EP, Setiawan M, Seah X, Loh IP, Peh GS, et al. Postnatal periodontal ligament as a novel adult stem cell source for regenerative corneal cell therapy. J Cell Mol Med. 2018;22:3119-32.

https://doi.org/10.1111/jcmm.13589

PMid:29536619 PMCid:PMC5980160

8. Moritani Y, Usui M, Sano K, Tsukamoto M, Shimomura-Kuroki J, Saito T, et al. Spheroid culture enhances osteogenic potential of periodontal ligament mesenchymal stem cells. J Periodontal Res. 2018;53:870-82.

https://doi.org/10.1111/jre.12577

PMid:29900548 

9. Abe S, Yamaguchi S, Sato Y, Harada K. Sphere-derived multipotent progenitor cells obtained from human oral mucosa are enriched in neural crest cells. Stem Cell Transl Med. 2016;5:117-28.

https://doi.org/10.5966/sctm.2015-0111

PMid:26582909 PMCid:PMC4704875

10. Li N, Li X, Chen K, Dong H, Kagami H. Characterization of spontaneous spheroids from oral mucosa-derived cells and their direct comparison with spheroids from skin-derived cells. Stem Cell Res Ther. 2019;10:184.

https://doi.org/10.1186/s13287-019-1283-0

PMid:31234925 PMCid:PMC6591807

11. Kagami H, Li X. Spheroids and organoids: Their implications for oral and craniofacial tissue/organ regeneration. J Oral Biol Craniofac Res. 2024;14:540-46.

https://doi.org/10.1016/j.jobcr.2024.07.002

PMid:39092136 PMCid:PMC11292544

12. Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

https://doi.org/10.1136/bmj.n71

PMid:33782057 PMCid:PMC8005924

13. Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Br J Pharmacol. 2020;177:3617-24.

https://doi.org/10.1111/bph.15193

PMid:32662519 PMCid:PMC7393194

14. Barker TH, Habibi N, Aromataris E, Stone JC, Leonardi-Bee J, Sears K, et al. The revised JBI critical appraisal tool for the assessment of risk of bias in quasi-experimental studies. JBI Evid Synth. 2024;22:378-88.

https://doi.org/10.11124/JBIES-23-00268

PMid:38287725 

15. Murashima-Suginami A, Katayama R, Ohmori T, Yamaguchi S, Fukumoto E, Fukumoto S, et al. Anti-USAG-1 therapy for tooth regeneration through enhanced BMP signaling. Sci Adv. 2021;7:eabf1798.

https://doi.org/10.1126/sciadv.abf1798

PMid:33579703 PMCid:PMC7880588

16. Shao F, Van Otterloo E, Cao H. Computational identification of key transcription factors for embryonic and postnatal Sox2+ dental epithelial stem cells. bioRxiv. 2023.

https://doi.org/10.1101/2023.12.22.573158

PMid:38187542

17. Guo W, Lin X, Zhang R, Hu L, Wang J, Wang F, et al. Spatiotemporal expression patterns of critical genes involved in FGF signaling during morphogenesis and odontogenesis of deciduous molars in miniature pigs. Int J Med Sci. 2022;19:132-41.

https://doi.org/10.7150/ijms.61798

PMid:34975307 PMCid:PMC8692127

18. Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth formation: Are the hardest tissues of the human body hard to regenerate? Int J Mol Sci. 2020;21:4031.

https://doi.org/10.3390/ijms21114031

PMid:32512908 PMCid:PMC7312198

19. Yu T, Klein OD. Molecular and cellular mechanisms of tooth development, homeostasis, and repair. Development. 2020;147:dev184754.

https://doi.org/10.1242/dev.184754

PMid:31980484 PMCid:PMC6983727

20. Calamari ZT, Hu JKH, Klein OD. Tissue mechanical forces and evolutionary developmental changes act through space and time to shape tooth morphology and function. Bioessays. 2018;40:e1800140.

https://doi.org/10.1002/bies.201800140

PMid:30387177 PMCid:PMC6516060

21. Li L, Tang Q, Wang A, Chen Y. Regrowing a tooth: In vitro and in vivo approaches. Curr Opin Cell Biol. 2019;61:126-31.

https://doi.org/10.1016/j.ceb.2019.08.002

PMid:31493737 

22. Popa EM, Buchtova M, Tucker AS. Revitalizing the rudimentary replacement dentition in the mouse. Development. 2019;146:dev171363.

https://doi.org/10.1242/dev.171363

PMid:30658984 

23. Lee JH, Seo SJ. Biomedical application of dental tissue-derived induced pluripotent stem cells. Stem Cells Int. 2016;2016:9762465.

https://doi.org/10.1155/2016/9762465

PMid:26989423 PMCid:PMC4773578

24. Morsczeck C, Reichert TE. Dental stem cells in tooth regeneration and repair in the future. Expert Opin Biol Ther. 2018;18:187-96.

https://doi.org/10.1080/14712598.2018.1402004

PMid:29110535 

25. Smith MM, Fraser GJ, Mitsiadis TA. Dental lamina as source of odontogenic stem cells: Evolutionary origins and developmental control of tooth generation in gnathostomes. J Exp Zool B Mol Dev Evol. 2009;312B:260-80.

https://doi.org/10.1002/jez.b.21272

PMid:19156674 

26. Harada H, Kettunen P, Jung HS, Mustonen T, Wang YA, Thesleff I. Localization of putative stem cells in dental epithelium and their association with Notch and FGF signaling. J Cell Biol. 1999;147:105-20.

https://doi.org/10.1083/jcb.147.1.105

PMid:10508859 PMCid:PMC2164976

27. Smith CE, Warshawsky H. Cellular renewal in the enamel organ and the odontoblast layer of the rat incisor as followed by radioautography using 3H-thymidine. Anat Rec. 1975;183:523-61.

https://doi.org/10.1002/ar.1091830405

PMid:1200409 

28. Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal. Curr Top Dev Biol. 2015;115:157-86.

https://doi.org/10.1016/bs.ctdb.2015.07.006

PMid:26589925 

29. Li J, Feng J, Liu Y, Ho TV, Grimes W, Ho HA, et al. BMP-SHH signaling network controls epithelial stem cell fate via regulation of its niche in the developing tooth. Dev Cell. 2015;33:125-35.

https://doi.org/10.1016/j.devcel.2015.02.021

PMid:25865348 PMCid:PMC4406846

30. Ahtiainen L, Uski I, Thesleff I, Mikkola ML. Early epithelial signaling center governs tooth budding morphogenesis. J Cell Biol. 2016;214:753-67.

https://doi.org/10.1083/jcb.201512074

PMid:27621364 PMCid:PMC5021093

31. Juuri E, Jussila M, Seidel K, Holmes S, Wu P, Richman J, et al. Sox2 marks epithelial competence to generate teeth in mammals and reptiles. Development. 2013;140:1424-32.

https://doi.org/10.1242/dev.089599

PMid:23462476 PMCid:PMC3596986

32. Martin KJ, Rasch LJ, Cooper RL, Metscher BD, Underwood CJ, Fraser GJ. Sox2+ progenitors in sharks link taste development with the evolution of regenerative teeth from denticles. Proc Natl Acad Sci U S A. 2016;113:14769-74.

https://doi.org/10.1073/pnas.1612354113

PMid:27930309 PMCid:PMC5187730