Serna-García M, Formaggio A, Carceller MC, Romero JJ, Flacco N. Identification of actin cytoskeleton organization genes in oral cancer and oral potentially malignant disorders using oral tissue RNA-seq database. Med Oral Patol Oral Cir Bucal. 2025 Nov 1;30 (6):e857-65.


doi:10.4317/medoral.27364

https://dx.doi.org/doi:10.4317/medoral.27364


1. Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science. 2009;326:1208-12.

https://doi.org/10.1126/science.1175862

PMid:19965462 PMCid:PMC3677050

2. Ivanov AI, Hunt D, Utech M, Nusrat A, Parkos CA. Differential roles for actin polymerization and a myosin II motor in assembly of the epithelial apical junctional complex. Mol Biol Cell. 2005;16:2636-50.

https://doi.org/10.1091/mbc.e05-01-0043

PMid:15800060 PMCid:PMC1142412

3. Lamouille S, Xu J, Derynck R.Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178.

https://doi.org/10.1038/nrm3758

PMid:24556840 PMCid:PMC4240281

4. Yamaguchi H, Condeelis J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim Biophys Acta. 2007;1773:642.

https://doi.org/10.1016/j.bbamcr.2006.07.001

PMid:16926057 PMCid:PMC4266238

5. Aseervatham J. Cytoskeletal Remodeling in Cancer. Biology (Basel). 2020;9:1-40.

https://doi.org/10.3390/biology9110385

PMid:33171868 PMCid:PMC7695181

6. Zhou S, Zhu Y, Li Z, Zhu Y, He Z, Zhang C. Exosome-derived long non-coding RNA ADAMTS9-AS2 suppresses progression of oral submucous fibrosis via AKT signalling pathway. J Cell Mol Med. 2021;25:2262-73.

https://doi.org/10.1111/jcmm.16219

PMid:33345447 PMCid:PMC7882956

7. Tuch BB, Laborde RR, Xu X, Gu J, Chung CB, Monighetti CK, et al. Tumor transcriptome sequencing reveals allelic expression imbalances associated with copy number alterations. PLoS One. 2010;5:e9317.

https://doi.org/10.1371/journal.pone.0009317

PMid:20174472 PMCid:PMC2824832

8. Xu S, Song Y, Shao Y, Zhou H. Comprehensive analysis of circular RNA in oral leukoplakia: upregulated circHLA-C as a potential biomarker for diagnosis and prognosis. Ann Transl Med. 2020;8:1375-75.

https://doi.org/10.21037/atm-20-3840

PMid:33313120 PMCid:PMC7723659

9. Law CW, Alhamdoosh M, Su S, Smyth GK, Ritchie ME. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Res. 2016;5:1408.

https://doi.org/10.12688/f1000research.9005.1

PMid:27441086. PMCid:PMC4937821

10. Hoo ZH, Candlish J, Teare D. What is an ROC curve? Emerg Med J. 2017;34:357-9.

https://doi.org/10.1136/emermed-2017-206735

PMid:28302644 

11. Khan K, Gogonea V, Fox PL. Aminoacyl-tRNA synthetases of the multi-tRNA synthetase complex and their role in tumorigenesis. Transl Oncol. 2022;19:101392.

https://doi.org/10.1016/j.tranon.2022.101392

PMid:35278792 PMCid:PMC8914993

12. Kim S, You S, Hwang D. Aminoacyl-tRNA synthetases and tumorigenesis: more than housekeeping. Nat Rev Cancer. 2011;11:708-18.

https://doi.org/10.1038/nrc3124

PMid:21941282 

13. Son SS, Jeong HS, Lee SW, Lee ES, Lee JG, Lee JH, et al. EPRS1-mediated fibroblast activation and mitochondrial dysfunction promote kidney fibrosis. Exp Mol Med. 2024;56:2673-89.

https://doi.org/10.1038/s12276-024-01360-6

PMid:39623092 PMCid:PMC11671583

14. Lin LQ, Lv SY, Ren HZ, Li RR, Li L, Pang YQ, et al. Evodiamine inhibits EPRS expression to regulate glutamate metabolism and proliferation of oral squamous cell carcinoma cells. Kaohsiung J Med Sci. 2024;40:348-59.

https://doi.org/10.1002/kjm2.12803

PMid:38243370 PMCid:PMC11895605

15. Kovac B, Mäkela TP, Vallenius T. Increased α-actinin-1 destabilizes E-cadherin-based adhesions and associates with poor prognosis in basal-like breast cancer. PLoS One. 2018;13:e0196986.

https://doi.org/10.1371/journal.pone.0196986

PMid:29742177 PMCid:PMC5942811

16. Xie GF, Zhao LD, Chen Q, Tang DX, Chen QY, Lu HF, et al. High ACTN1 Is Associated with Poor Prognosis, and ACTN1 Silencing Suppresses Cell Proliferation and Metastasis in Oral Squamous Cell Carcinoma. Drug Des Devel Ther. 2020;14:1717-27.

https://doi.org/10.2147/DDDT.S244516

PMid:32440097 PMCid:PMC7211328

17. Villalonga E, Mosrin C, Normand T, Girardin C, Serrano A, Žunar B, et al. LIM Kinases, LIMK1 and LIMK2, Are Crucial Node Actors of the Cell Fate: Molecular to Pathological Features. Cells. 2023;12:805.

https://doi.org/10.3390/cells12050805

PMid:36899941 PMCid:PMC10000741

18. Lagoutte E, Villeneuve C, Lafanechère L, Wells CM, Jones GE, Chavrier P, et al. LIMK Regulates Tumor-Cell Invasion and Matrix Degradation Through Tyrosine Phosphorylation of MT1-MMP. Sci Rep. 2016;6:24925.

https://doi.org/10.1038/srep24925

PMid:27116935 PMCid:PMC4847008

19. Shi B, Ma C, Liu G, Guo Y. MiR-106a directly targets LIMK1 to inhibit proliferation and EMT of oral carcinoma cells. Cell Mol Biol Lett. 2019;24:1.

https://doi.org/10.1186/s11658-018-0127-8

PMid:30873211 PMCid:PMC6402160

20. Kase-Kato I, Asai S, Minemura C, Tsuneizumi K, Oshima S, Koma A, et al. Molecular pathogenesis of the coronin family: Coro2a facilitates migration and invasion abilities in oral squamous cell carcinoma. Int J Mol Sci. 2021;22:12684.

https://doi.org/10.3390/ijms222312684

PMid:34884487 PMCid:PMC8657730

21. Ong MS, Deng S, Halim CE, Cai W, Tan TZ, Huang RYJ, et al. Cytoskeletal Proteins in Cancer and Intracellular Stress: A Therapeutic Perspective. Cancers (Basel). 2020;12:238.

https://doi.org/10.3390/cancers12010238

PMid:31963677 PMCid:PMC7017214

22. Heuser VD, Mansuri N, Mogg J, Kurki S, Repo H, Kronqvist P, et al. Formin Proteins FHOD1 and INF2 in Triple-Negative Breast Cancer: Association With Basal Markers and Functional Activities. Breast Cancer (Auckl). 2018;12:1178223418792247.

https://doi.org/10.1177/1178223418792247

PMid:30158824 PMCid:PMC6109849

23. Masoudi M, Seki M, Yazdanparast R, Yachie N, Aburatani H. A genome-scale CRISPR/Cas9 knockout screening reveals SH3D21 as a sensitizer for gemcitabine. Sci Rep. 2019;9:19188.

https://doi.org/10.1038/s41598-019-55893-2

PMid:31844142 PMCid:PMC6915784

24. Wang W, Eddy R, Condeelis J. The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer. 2007;7:429-40.

https://doi.org/10.1038/nrc2148

PMid:17522712 PMCid:PMC4270061

25. Nishimura S, Tsuda H, Kataoka F, Arao T, Nomura H, Chiyoda T, et al. Overexpression of cofilin 1 can predict progression-free survival in patients with epithelial ovarian cancer receiving standard therapy. Hum Pathol. 2011;42:516-21.

https://doi.org/10.1016/j.humpath.2010.07.019

PMid:21237490 

26. Turhani D, Krapfenbauer K, Thurnher D, Langen H, Fountoulakis M. Identification of differentially expressed, tumor-associated proteins in oral squamous cell carcinoma by proteomic analysis. Electrophoresis. 2006;27:1417-23.

https://doi.org/10.1002/elps.200500510

PMid:16568407 

27. Zhang N, Gao Y, Bian Q, Wang Q, Shi Y, Zhao Z, et al. The role of fascin-1 in the pathogenesis, diagnosis and management of respiratory related cancers. Front Oncol. 2022;12:948110.

https://doi.org/10.3389/fonc.2022.948110

PMid:36033434 PMCid:PMC9404296

28. Liu H, Hao W, Wang X, Zhang Y, He L, Xue X, et al. Identification of novel molecules and pathways associated with fascin actin bundling protein 1 in laryngeal squamous cell carcinoma through comprehensive transcriptome analysis. Int J Mol Med. 2024;53:39.

https://doi.org/10.3892/ijmm.2024.5363

PMid:38426543 PMCid:PMC10914310

29. Lii CK, Chang JW, Chen JJ, Chen HW, Liu KL, Yeh SL, et al. Docosahexaenoic acid inhibits 12-O-tetradecanoylphorbol-13- acetate-induced fascin-1-dependent breast cancer cell migration by suppressing the PKCδ- and Wnt-1/β-catenin-mediated pathways. Oncotarget. 2016;7:25162-79.

https://doi.org/10.18632/oncotarget.7301

PMid:27036017 PMCid:PMC5041895

30. Hopkins AM, Walsh SV, Verkade P, Boquet P, Nusrat A. Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function. J Cell Sci. 2003;116:725-42.

https://doi.org/10.1242/jcs.00300

PMid:12538773 

31. Sun Z, Guo X, Chen H, Ling J, Zhao H, Chang A, et al. MYO1B as a prognostic biomarker and a therapeutic target in Arecoline-associated oral carcinoma. Mol Carcinog. 2023;62:920-39.

https://doi.org/10.1002/mc.23535

PMid:37014156 

32. Chai AWY, Tan YH, Ooi S, Yee PS, Yee SM, Cheong SC. TNO155 is a selective SHP2 inhibitor to target PTPN11-dependent oral squamous cell carcinoma. Heliyon. 2024;10:e39677.

https://doi.org/10.1016/j.heliyon.2024.e39677

PMid:39524880 PMCid:PMC11550046

33. Li B, Chen X, Xian H, Wen Q, Wang T. Gene mutation analysis of oral submucous fibrosis cancerization in Hainan Island. PeerJ. 2023;11:e16392.

https://doi.org/10.7717/peerj.16392

PMid:38050610 PMCid:PMC10693820

34. Zhao Y, Feng X, Zhao Y, Yang H, Zhang C. Overexpression of ST7-AS1 enhances apoptosis and inhibits proliferation of papillary thyroid carcinoma cells via microRNA-181b-5p-dependent inhibition of Tripartite Motif Containing 3. Mol Biotechnol. 2023;65:477-90.

https://doi.org/10.1007/s12033-022-00536-7

PMid:36030355 

35. Zhuang L, Wang X, Wang Z, Ma X, Han B, Zou H, et al. MicroRNA-23b functions as an oncogene and activates AKT/GSK3β/β-catenin signaling by targeting ST7L in hepatocellular carcinoma. Cell Death Dis. 2017;8:e2804.

https://doi.org/10.1038/cddis.2017.216

PMid:28518144 PMCid:PMC5520730

36. Katoh M. Molecular cloning and characterization of ST7R (ST7-like, ST7L) on human chromosome 1p13, a novel gene homologous to tumor suppressor gene ST7 on human chromosome 7q31. Int J Oncol. 2002;20:1247-53.

https://doi.org/10.3892/ijo.20.6.1247

PMid:12012006