Ahn S, Kim M, Kim J, Park W. Application of deep learning in evaluating the anatomical relationship between the mandibular third molar and inferior alveolar nerve: A scoping review. Med Oral Patol Oral Cir Bucal. 2026 Jan 1;31 (1):e95-e103.

doi:10.4317/medoral.27584

https://dx.doi.org/doi:10.4317/medoral.27584


1. Smith AC, Barry SE, Chiong AY, Hadzakis D, Kha SL, Mok SC, et al. Inferior alveolar nerve damage following removal of mandibular third molar teeth: A prospective study using panoramic radiography. Aust Dent J. 1997;42(3):149-52
https://doi.org/10.1111/j.1834-7819.1997.tb00111.x
PMid:9241922

2. Gomes AC, Vasconcelos BC, Silva ED, Caldas Ade F Jr, Pita Neto IC. Sensitivity and specificity of pantomography to predict inferior alveolar nerve damage during extraction of impacted lower third molars. J Oral Maxillofac Surg. 2008;66(2):256-9
https://doi.org/10.1016/j.joms.2007.08.020
PMid:18201605

3. Marciani RD. Complications of third molar surgery and their management. Atlas Oral Maxillofac Surg Clin North Am. 2012;20(2):233
https://doi.org/10.1016/j.cxom.2012.06.003
PMid:23021398

4. Hung K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and performance of artificial intelligence applications in dental and maxillofacial radiology: A systematic review. Dentomaxillofac Radiol. 2020;49(1):20190107
https://doi.org/10.1259/dmfr.20190107
PMid:31386555 PMCid:PMC6957072

5. Hwang JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the field of dentistry. Imaging Sci Dent. 2019;49(1):1-7
https://doi.org/10.5624/isd.2019.49.1.1
PMid:30941282 PMCid:PMC6444007

6. Corbella S, Srinivas S, Cabitza F. Applications of deep learning in dentistry. Oral Surg Oral Med Oral Pathol Oral Radiol. 2021;132(2):225-38
https://doi.org/10.1016/j.oooo.2020.11.003
PMid:33303419

7. Rodrigues JA, Krois J, Schwendicke F. Demystifying artificial intelligence and deep learning in dentistry. Braz Oral Res. 2021;35:e094
https://doi.org/10.1590/1807-3107bor-2021.vol35.0094
PMid:34406309

8. Carrillo-Perez F, Pecho OE, Morales JC, Paravina RD, Della Bona A, Ghinea R, et al. Applications of artificial intelligence in dentistry: A comprehensive review. J Esthet Restor Dent. 2022;34(1):259-80
https://doi.org/10.1111/jerd.12844
PMid:34842324

9. Vinayahalingam S, Kempers S, Limon L, Deibel D, Maal T, Hanisch M, et al. Classification of caries in third molars on panoramic radiographs using deep learning. Sci Rep. 2021;11(1):12609
https://doi.org/10.1038/s41598-021-92121-2
PMid:34131266 PMCid:PMC8206082

10. Sukegawa S, Matsuyama T, Tanaka F, Hara T, Yoshii K, Yamashita K, et al. Evaluation of multi-task learning in deep learning-based positioning classification of mandibular third molars. Sci Rep. 2022;12(1):684
https://doi.org/10.1038/s41598-021-04603-y
PMid:35027629 PMCid:PMC8758752

11. Choi E, Lee S, Jeong E, Shin S, Park H, Youm S, et al. Artificial intelligence in positioning between mandibular third molar and inferior alveolar nerve on panoramic radiography. Sci Rep. 2022;12(1):2456
https://doi.org/10.1038/s41598-022-06483-2
PMid:35165342 PMCid:PMC8844031

12. Sukegawa S, Tanaka F, Hara T, Yoshii K, Yamashita K, Nakano K, et al. Deep learning model for analyzing the relationship between mandibular third molar and inferior alveolar nerve in panoramic radiography. Sci Rep. 2022;12(1):16925
https://doi.org/10.1038/s41598-022-21408-9
PMid:36209283 PMCid:PMC9547920

13. Kempers S, van Lierop P, Hsu TH, Moin DA, Bergé S, Ghaeminia H, et al. Positional assessment of lower third molar and mandibular canal using explainable artificial intelligence. J Dent. 2023;133:104519
https://doi.org/10.1016/j.jdent.2023.104519
PMid:37061117

14. Kim JY, Kahm SH, Yoo S, Bae SM, Kang JE, Lee SH. The efficacy of supervised learning and semi-supervised learning in diagnosis of impacted third molar on panoramic radiographs through artificial intelligence model. Dentomaxillofac Radiol. 2023;52(6):20230030
https://doi.org/10.1259/dmfr.20230030
PMid:37192043 PMCid:PMC10461259

15. Takebe K, Imai T, Kubota S, Nishimoto A, Amekawa S, Uzawa N. Deep learning model for the automated evaluation of contact between the lower third molar and inferior alveolar nerve on panoramic radiography. J Dent Sci. 2023;18(3):991-6
https://doi.org/10.1016/j.jds.2022.12.008
PMid:37404620 PMCid:PMC10316438

16. Celik ME. Deep learning-based detection tool for impacted mandibular third molar teeth. Diagnostics (Basel). 2022;12(4):942
https://doi.org/10.3390/diagnostics12040942
PMid:35453990 PMCid:PMC9025752

17. Vinayahalingam S, Xi T, Bergé S, Maal T, de Jong G. Automated detection of third molars and mandibular nerve by deep learning. Sci Rep. 2019;9(1):9007
https://doi.org/10.1038/s41598-019-45487-3
PMid:31227772 PMCid:PMC6588560

18. Jaskari J, Sahlsten J, Järnstedt J, Mehtonen H, Karhu K, Sundqvist O, et al. Deep learning method for mandibular canal segmentation in dental cone beam computed tomography volumes. Sci Rep. 2020;10(1):5842
https://doi.org/10.1038/s41598-020-62321-3
PMid:32245989 PMCid:PMC7125134

19. Orhan K, Bilgir E, Bayrakdar IS, Ezhov M, Gusarev M, Shumilov E. Evaluation of artificial intelligence for detecting impacted third molars on cone-beam computed tomography scans. J Stomatol Oral Maxillofac Surg. 2021;122(4):333-7
https://doi.org/10.1016/j.jormas.2020.12.006
PMid:33346145

20. Kwak GH, Kwak EJ, Song JM, Park HR, Jung YH, Cho BH, et al. Automatic mandibular canal detection using a deep convolutional neural network. Sci Rep. 2020;10(1):5711
https://doi.org/10.1038/s41598-020-62586-8
PMid:32235882 PMCid:PMC7109125

21. Ariji Y, Mori M, Fukuda M, Katsumata A, Ariji E. Automatic visualization of the mandibular canal in relation to an impacted mandibular third molar on panoramic radiographs using deep learning segmentation and transfer learning techniques. Oral Surg Oral Med Oral Pathol Oral Radiol. 2022;134(6):749-57
https://doi.org/10.1016/j.oooo.2022.05.014
PMid:36229373

22. Yoo JH, Yeom HG, Shin W, Yun JP, Lee JH, Jeong SH, Lim HJ, Lee J, et al. Deep learning-based prediction of extraction difficulty for mandibular third molars. Sci Rep. 2021;11(1):1954
https://doi.org/10.1038/s41598-021-81449-4
PMid:33479379 PMCid:PMC7820274

23. Jeon KJ, Choi H, Lee C, Han SS. Automatic diagnosis of true proximity between the mandibular canal and the third molar on panoramic radiographs using deep learning. Sci Rep. 2023;13(1):2202
https://doi.org/10.1038/s41598-023-49512-4
PMid:38086921 PMCid:PMC10716248

24. Zirek T, Öziç MÜ, Tassoker M. AI-driven localization of all impacted teeth and prediction of Winter angulation for third molars on panoramic radiographs: Clinical user interface design. Comput Biol Med. 2024;178:108755
https://doi.org/10.1016/j.compbiomed.2024.108755
PMid:38897151

25. Rood JP, Shehab BA. The radiological prediction of inferior alveolar nerve injury during third molar surgery. Br J Oral Maxillofac Surg. 1990;28(1):20-5
https://doi.org/10.1016/0266-4356(90)90005-6
PMid:2322523

26. Su N, van Wijk A, Berkhout E, Sanderink G, de Lange J, Wang H, van der Heijden GJMG. Predictive value of panoramic radiography for injury of inferior alveolar nerve after mandibular third molar surgery. J Oral Maxillofac Surg. 2017;75(4):663-79
https://doi.org/10.1016/j.joms.2016.12.013
PMid:28041843

27. Steel BJ, Surendran KSB, Braithwaite C, Mehta D, Keith DJW. Current thinking in lower third molar surgery. Br J Oral Maxillofac Surg. 2022;60(3):257-65
https://doi.org/10.1016/j.bjoms.2021.06.016
PMid:34728107