Ahn S, Kim M, Kim J, Park W. Application of deep learning in evaluating the anatomical relationship between the mandibular third molar and inferior alveolar nerve: A scoping review. Med Oral Patol Oral Cir Bucal. 2026 Jan 1;31 (1):e95-e103.
doi:10.4317/medoral.27584
https://dx.doi.org/doi:10.4317/medoral.27584
1. Smith
AC, Barry SE, Chiong AY, Hadzakis D, Kha SL, Mok SC, et al. Inferior
alveolar nerve damage following removal of mandibular third molar
teeth: A prospective study using panoramic radiography. Aust Dent J.
1997;42(3):149-52
https://doi.org/10.1111/j.1834-7819.1997.tb00111.x
PMid:9241922
2. Gomes
AC, Vasconcelos BC, Silva ED, Caldas Ade F Jr, Pita Neto IC.
Sensitivity
and specificity of pantomography to predict inferior alveolar nerve
damage during extraction of impacted lower third molars. J Oral
Maxillofac Surg.
2008;66(2):256-9
https://doi.org/10.1016/j.joms.2007.08.020
PMid:18201605
3.
Marciani RD. Complications of third molar surgery and their
management. Atlas Oral Maxillofac Surg Clin North Am.
2012;20(2):233
https://doi.org/10.1016/j.cxom.2012.06.003
PMid:23021398
4. Hung
K, Montalvao C, Tanaka R, Kawai T, Bornstein MM. The use and
performance of artificial intelligence applications in dental and
maxillofacial radiology: A systematic review. Dentomaxillofac Radiol.
2020;49(1):20190107
https://doi.org/10.1259/dmfr.20190107
PMid:31386555
PMCid:PMC6957072
5. Hwang
JJ, Jung YH, Cho BH, Heo MS. An overview of deep learning in the
field of dentistry. Imaging Sci Dent.
2019;49(1):1-7
https://doi.org/10.5624/isd.2019.49.1.1
PMid:30941282
PMCid:PMC6444007
6.
Corbella S, Srinivas S, Cabitza F. Applications of deep learning in
dentistry. Oral Surg Oral Med Oral Pathol Oral Radiol.
2021;132(2):225-38
https://doi.org/10.1016/j.oooo.2020.11.003
PMid:33303419
7.
Rodrigues JA, Krois J, Schwendicke F. Demystifying artificial
intelligence and deep learning in dentistry. Braz
Oral Res.
2021;35:e094
https://doi.org/10.1590/1807-3107bor-2021.vol35.0094
PMid:34406309
8. Carrillo-Perez F, Pecho
OE, Morales JC, Paravina RD, Della Bona A, Ghinea R, et al.
Applications
of artificial intelligence in dentistry: A comprehensive review. J
Esthet Restor Dent.
2022;34(1):259-80
https://doi.org/10.1111/jerd.12844
PMid:34842324
9.
Vinayahalingam S, Kempers S, Limon L, Deibel D, Maal T, Hanisch M, et
al. Classification of caries in third molars on panoramic radiographs
using deep learning. Sci Rep.
2021;11(1):12609
https://doi.org/10.1038/s41598-021-92121-2
PMid:34131266
PMCid:PMC8206082
10.
Sukegawa S, Matsuyama T, Tanaka F, Hara T, Yoshii K, Yamashita K, et
al. Evaluation of multi-task learning in deep learning-based
positioning classification of mandibular third molars. Sci Rep.
2022;12(1):684
https://doi.org/10.1038/s41598-021-04603-y
PMid:35027629
PMCid:PMC8758752
11. Choi
E, Lee S, Jeong E, Shin S, Park H, Youm S, et al. Artificial
intelligence in positioning between mandibular third molar and
inferior alveolar nerve on panoramic radiography. Sci Rep.
2022;12(1):2456
https://doi.org/10.1038/s41598-022-06483-2
PMid:35165342
PMCid:PMC8844031
12.
Sukegawa S, Tanaka F, Hara T, Yoshii K, Yamashita K, Nakano K, et al.
Deep learning model for analyzing the relationship between mandibular
third molar and inferior alveolar nerve in panoramic radiography. Sci
Rep.
2022;12(1):16925
https://doi.org/10.1038/s41598-022-21408-9
PMid:36209283
PMCid:PMC9547920
13.
Kempers S, van Lierop P, Hsu TH, Moin DA, Bergé S, Ghaeminia H, et
al. Positional assessment of lower third molar and mandibular canal
using explainable artificial intelligence. J Dent.
2023;133:104519
https://doi.org/10.1016/j.jdent.2023.104519
PMid:37061117
14. Kim
JY, Kahm SH, Yoo S, Bae SM, Kang JE, Lee SH. The efficacy of
supervised learning and semi-supervised learning in diagnosis of
impacted third molar on panoramic radiographs through artificial
intelligence model. Dentomaxillofac Radiol.
2023;52(6):20230030
https://doi.org/10.1259/dmfr.20230030
PMid:37192043
PMCid:PMC10461259
15.
Takebe K, Imai T, Kubota S, Nishimoto A, Amekawa S, Uzawa N. Deep
learning model for the automated evaluation of contact between the
lower third molar and inferior alveolar nerve on panoramic
radiography. J Dent Sci.
2023;18(3):991-6
https://doi.org/10.1016/j.jds.2022.12.008
PMid:37404620
PMCid:PMC10316438
16.
Celik ME. Deep learning-based detection tool for impacted mandibular
third molar teeth. Diagnostics (Basel).
2022;12(4):942
https://doi.org/10.3390/diagnostics12040942
PMid:35453990
PMCid:PMC9025752
17.
Vinayahalingam S, Xi T, Bergé S, Maal T, de Jong G. Automated
detection of third molars and mandibular nerve by deep learning. Sci
Rep.
2019;9(1):9007
https://doi.org/10.1038/s41598-019-45487-3
PMid:31227772
PMCid:PMC6588560
18.
Jaskari J, Sahlsten J, Järnstedt J, Mehtonen H, Karhu K, Sundqvist
O, et al. Deep learning method for mandibular canal segmentation in
dental cone beam computed tomography volumes. Sci Rep.
2020;10(1):5842
https://doi.org/10.1038/s41598-020-62321-3
PMid:32245989
PMCid:PMC7125134
19.
Orhan K, Bilgir E, Bayrakdar IS, Ezhov M, Gusarev M, Shumilov E.
Evaluation of artificial intelligence for detecting impacted third
molars on cone-beam computed tomography scans. J Stomatol Oral
Maxillofac Surg.
2021;122(4):333-7
https://doi.org/10.1016/j.jormas.2020.12.006
PMid:33346145
20. Kwak
GH, Kwak EJ, Song JM, Park HR, Jung YH, Cho BH, et al. Automatic
mandibular canal detection using a deep convolutional neural network.
Sci Rep.
2020;10(1):5711
https://doi.org/10.1038/s41598-020-62586-8
PMid:32235882
PMCid:PMC7109125
21.
Ariji Y, Mori M, Fukuda M, Katsumata A, Ariji E. Automatic
visualization of the mandibular canal in relation to an impacted
mandibular third molar on panoramic radiographs using deep learning
segmentation and transfer learning techniques. Oral Surg Oral Med
Oral Pathol Oral Radiol.
2022;134(6):749-57
https://doi.org/10.1016/j.oooo.2022.05.014
PMid:36229373
22. Yoo
JH, Yeom HG, Shin W, Yun JP, Lee JH, Jeong SH, Lim HJ, Lee J, et al.
Deep learning-based prediction of extraction difficulty for
mandibular third molars. Sci Rep.
2021;11(1):1954
https://doi.org/10.1038/s41598-021-81449-4
PMid:33479379
PMCid:PMC7820274
23. Jeon
KJ, Choi H, Lee C, Han SS. Automatic diagnosis of true proximity
between the mandibular canal and the third molar on panoramic
radiographs using deep learning. Sci Rep.
2023;13(1):2202
https://doi.org/10.1038/s41598-023-49512-4
PMid:38086921
PMCid:PMC10716248
24.
Zirek T, Öziç MÜ, Tassoker M. AI-driven localization of all
impacted teeth and prediction of Winter angulation for third molars
on panoramic radiographs: Clinical user interface design. Comput Biol
Med.
2024;178:108755
https://doi.org/10.1016/j.compbiomed.2024.108755
PMid:38897151
25. Rood
JP, Shehab BA. The radiological prediction of inferior alveolar nerve
injury during third molar surgery. Br J Oral Maxillofac Surg.
1990;28(1):20-5
https://doi.org/10.1016/0266-4356(90)90005-6
PMid:2322523
26. Su
N, van Wijk A, Berkhout E, Sanderink G, de Lange J, Wang H, van der
Heijden GJMG. Predictive value of panoramic radiography for injury of
inferior alveolar nerve after mandibular third molar surgery. J Oral
Maxillofac Surg.
2017;75(4):663-79
https://doi.org/10.1016/j.joms.2016.12.013
PMid:28041843
27.
Steel BJ, Surendran KSB, Braithwaite C, Mehta D, Keith DJW. Current
thinking in lower third molar surgery. Br
J Oral Maxillofac Surg.
2022;60(3):257-65
https://doi.org/10.1016/j.bjoms.2021.06.016
PMid:34728107